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Abstract

Deep learning leads the performance in many areas of computer vision. However, after a decade

of research, it tends to require larger datasets and more complex models, leading to heightened

resource consumption across all fronts. Regrettably, meeting these requirements proves challeng-

ing in many real-life scenarios. First, both data collection and labeling processes entail substantial

labor and time investments. This challenge becomes especially pronounced in domains such as

medicine, where identifying rare diseases demands meticulous data curation. Secondly, the large

size of state-of-the-art models, such as ViT, Stable Diffusion, and ConvNext, hinders their deploy-

ment on resource-constrained platforms like mobile devices. Research indicates pervasive redun-

dancies within current neural network structures, exacerbating the issue. Lastly, even with ample

datasets and optimized models, the time required for training and inference remains prohibitive

in certain contexts. Consequently, there is a burgeoning interest among researchers in exploring

avenues for efficient artificial intelligence.

This study endeavors to delve into various facets of efficiency within computer vision, in-

cluding data efficiency, model efficiency, as well as training and inference efficiency. The data

efficiency is improved from the perspective of increasing information brought by given image in-

puts and reducing redundancies of RGB image formats. To achieve this, we propose to integrate

both spatial and frequency representations to finetune the classifier. Additionally, we propose

explicitly increasing the input information density in the frequency domain by deleting unimpor-

tant frequency channels. For model efficiency, we scrutinize the redundancies present in widely

used vision transformers. Our investigation reveals that trivial attention in their attention modules

covers useful non-trivial attention due to its large amount. We propose mitigating the impact of

accumulated trivial attention weights. To increase training efficiency, we propose SuperLoRA,

a generation of LoRA adapter, to fine-tune pretrained models with few iterations and extremely-
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low parameters. Finally, a model simplification pipeline is proposed to further reduce inference

time on mobile devices. By addressing these challenges, we aim to advance the practicality and

performance of computer vision systems in real-world applications.
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Chapter 1

Introduction to Data Efficient Learning

1.1 Background

With the explosion in the amount of data we generate and are able to access today, deep learning,

as a data-driven method, has become the hotspot and achieved significant performance in many

computer vision tasks [62, 12, 63, 118, 146]. Deep learning is a branch of machine learning

algorithms that feeds data to models and then optimizes the models with some loss functions to

estimate patterns of the data, where the models are deep neural networks. Deep neural networks

refer to networks with more than three layers, up to 152 layers in [62]. With more data, the feature

extraction ability of deep neural networks is extraordinary on large models with many parameters

by accepting only unstructured data like text and image pixels to output high-level features for

tasks, like classification and regression. And this benefits many fields where large data is accessible

like general image classification and segmentation, and both computation resources and speed are

not restricted. However, meeting all these requirements is either difficult or unnecessary.

Firstly, collecting so much data to train a good large model is not always realistic and is ex-

pensive. For example, identify the dangerous event when a child is playing in the middle of a road

with cars passing by. This is a vital ability for autonomous vehicles so that they can recognize it

and correspond correctly and immediately to avoid accidents. However, collecting enough data

to train a deep learning model in this case is not realistic since this is a rare event in our daily

lives. Besides this, both collecting and labeling data can be expensive considering both time and

money costs. More importantly, research shows humans can recognize new categories with even

a single example [150], which is apparently in the opposite direction of current machine learning
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algorithms.

In addition to data efficiency, using large models is not always feasible. To bring the power of

AI into our daily lives, deep neural network models are normally deployed on edge devices, like

smartphones. However, most of those devices have limited memory and computation resources,

making it impossible to afford the large amount of computation of deep neural networks. Addi-

tionally, researchers found that there is much noise included in large models.

Along with large datasets and large models is much training and inference time, which is not

bearable sometimes. For instance, it may take about 355 years to train GPT-4 on a single NVIDIA

V100, i.e. forever.

To handle these scenarios, efficient AI has gained increasing attention among researchers,

which targeting to increase efficiency in all ways, where efficiency means either achieving com-

parable or even better quantitative results using fewer resources (data, model size, training time or

inference time) or get better results using comparable resource, including data efficiency - to reduce

the reliance on a large amount of labeled data by data augmentation and data distillation, model ef-

ficiency - to reduce noise in models like searching more compact structures by Neural Architecture

Search (NAS) and pruning, training and inference efficiency - to reduce time at training/inference

like transfer learning and quantization.

1.2 Challenges

There are some common challenges for efficient deep learning.

1. Overfitting. Larger models produce better generalization. However, when data size is de-

creased largely, e.g., from 14 million images in the ImageNet dataset to 60, 000 images

in CIFAR-10, large models cannot work anymore. Instead, with limited data, large mod-

els tend to overfit the training set while generalizing badly on the testing set. As a result,

small datasets usually mean smaller models to get better convergence at the cost of feature

extraction capacity. Besides reducing model size, there are also other methods to mitigate
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overfitting, like data augmentation.

2. Underfitting. This comes with a greatly decreased model size. When the model becomes

much smaller by techniques like pruning, NAS, or knowledge distillation, fewer constraints

are set by the model, resulting in a much larger solution space and hence worse generalization

result, which is called underfitting.

3. Domain Generalization. Another issue is the worse performance on the testing set caused

by the domain gap when the dataset is too small or the source domain and target domain

differs a lot in transfer learning. Unlike languages, which have little domain gap between

datasets, image datasets suffer from domain gaps caused by different view angles, weather,

sketch or photograph, light, and so on. Hence, large datasets can cover more domains to

get better generalization compared. However, for small datasets, limited labeled examples

exaggerate the domain gap between the training set and testing set, even between batches in

the training set.

1.3 Related Work

Many researches are conducted around different aspects of efficient AI, including data efficiency,

model efficiency, and training/inference efficiency.

1.3.1 Data Efficiency

Firstly, to increase input information. Noticing good performance of data-rich models, the most di-

rect way to increase data efficiency is to generate more data to mimic data-rich scenarios, including

inputting data of different modalities (vision and text) and different forms (RGB images and their

transformations like Discrete Cosine Transformation and wavelet transformation). In addition, we

can generate more data of the same form given a few examples, like getting more RGB features

by feature operating on given examples, including intersection, union and subtraction [3]. Mixing
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foreground and background from given examples is also viable as shown in [201]. We can even

learn from those imaginary data that benefit few-shot classification [168].

Besides, to reduce data noise. A commonly used way is to perform data distillation to generate

a summary of input data and use the high-quality data to train the model[143]. Actively learn-

ing [139, 6, 152] propose to use different strategies to use fewer examples, e.g., using the most

important examples first.

1.3.2 Model Efficiency

The most direct way is to reduce the model size. Knowledge distillation [123, 9] is a popular

one that distills information from a larger teacher model to a smaller student model by aligning

intermediate features. NAS [73, 174, 165] reduces model size by proposing a set of model structure

candidates based on the base model, and then selecting the best one with carefully designed metrics

after training all the candidates for a few steps.

Moreover, more compact structures are also helpful in increasing model efficiency. For exam-

ple, depth-wise convolution [31] reduces the connections by 8/9 by removing all relations between

depths.

1.3.3 Training Efficiency

To optimize quickly on data-hungry tasks, one widely used technique is fine-tuning, e.g. pre-

training model with large-scale data and then using the resulted parameters as initialization of

the model in downstream tasks. This becomes even more popular when large language models

and foundation models arise. Which parameters to fine-tune and how to fine-tune become the

core issues. In this track, adapter-based algorithms, which learn only adapters by freezing all

pretrained models and adding adapters into the frozen model, are widely explored as it’s convenient

for downstream tasks to share pretrained models. In this way, only adapters are necessary to learn

and store. Besides, selecting an appropriate task that can benefit current downstream tasks to

pretrain is a challenge.
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Another interesting way to increase training efficiency is to design task-specific metrics. For

example, few-shot learning usually designs a transformation to a lower dimension and then uses a

metric function to compare, called metric learning. In other words, it deals with “what to compare”

and “how to compare”. Prototypical Network [5] proposes to average the embeddings of given

examples from each class as the class prototype, and then compare each query example with class

prototypes to get the closest one. TADAM [6] further shaped the class prototype with the task

prototype. Both methods mainly answer the “what to compare” question. Different from this, the

Relation Network [7] mainly deals with “how to compare” by modeling the metric function instead

of using a predefined one like Euclidean distance.

1.3.4 Inference Efficiency

At the deployment stage, there are also some techniques to speed up inference based on the hard-

ware while keeping performance as much as possible. Quantization [109, 124, 185] focuses on

replacing high-precision datatype like FP32 with low-precision datatype like int8, which retains

the model structure and most model weights, but loses just some precision. In this case, which

data to quantize and how to quantize become the core problems.

1.4 Our Contributions

In this dissertation, our contributions to addressing efficient deep learning in computer vision can

be summarized as follows:

1. Data Efficiency - increase input information Propose to integrate the frequency and spatial

representations on few-shot learning, which increases data efficiency by introducing more

input information without new labeled data.

2. Data Efficiency - decrease data noise Propose to explicitly increase the input information

density in the frequency domain, which increases data efficiency by removing noise in data
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representations. Specifically, we introduce selecting channels by calculating the channel-

wise heatmaps in the frequency domain using Discrete Cosine Transform (DCT), reducing

the size of input while keeping most information and hence increasing the information den-

sity. As a result, 25% fewer channels are kept while better performance is achieved compared

with previous work.

3. Model Efficiency Discover that the number of trivial attention weights is far greater than

the important ones and the accumulated trivial weights dominate the attention in Vision

Transformers due to their large quantity, which is not handled by the attention itself. This will

cover useful non-trivial attention and harm the performance when trivial attention includes

more noise. To solve this issue, we propose to divide attention weights into trivial and non-

trivial ones by thresholds, then Suppressing Accumulated Trivial Attention (SATA) weights

by proposed Trivial WeIghts Suppression Transformation (TWIST) to reduce attention noise.

4. Training Efficiency Propose a generalized framework called SuperLoRA that unifies and

extends different Low-Rank Adaptation (LoRA) variants, which can be realized under dif-

ferent hyper-parameter settings. Introducing new options with grouping, folding, shuffling,

projection, and tensor decomposition, SuperLoRA offers high flexibility and demonstrates

superior performance, with up to 10-fold gain in parameter efficiency for transfer learning

tasks.

5. Inference Efficiency Propose a roadmap that can be applied to further accelerate image

restoration models prior to deployment while simultaneously increasing PSNR (Peak Signal-

to-Noise Ratio) and SSIM (Structural Similarity Index). The roadmap first increases the

model capacity by adding more parameters to partial convolutions on FLOPs non-sensitive

layers. Then, it applies partial depthwise convolution coupled with decoupling upsampling/-

downsampling layers to accelerate the model speed.
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Chapter 2

Data Efficiency: Increasing Input Information by Integrating

Spatial and Frequency Representations

In this chapter, we solve the efficient deep learning tasks, specifically few-shot learning, from

the perspective of increasing input information by including representations from another domain,

DCT frequency domain [25].

2.1 Introduction

Inspired by the fact that human vision is more sensitive to low-frequency information [83, 178],

we assume that human beings are learning some frequency information when classifying images.

Results from the recent research [178] also demonstrated impressive performance in the frequency

domain where the backbone networks are fed with frequency domain information. To exploit the

advantages of both the spatial domain and frequency domain information, we propose to integrate

the features extracted from the spatial domain and the frequency domain, aiming to increase the

performance of few-shot learning. As illustrated in Figure 2.1, the spatial domain feature module

employs CNN to obtain the representation of original images, and the frequency domain feature

module utilizes the Discrete Cosine Transformation (DCT) module [? ] to generate the frequency

representation of original images and feed them into CNN to generate frequency features. Both

the frequency features and spatial features are then fused together, followed by a classifier.

The main contributions of this study are as follows:

1. This chapter proposes to exploit DCT with static selected channels to few-shot classification
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Figure 2.1: The structure of the proposed framework. We concatenate the features from two networks. The
upper network, “CNN (s)" denotes a regular image classification network where we draw the input layers
before the backbone from the whole CNN and “(s)" means the “spatial domain". In the lower network,
“CNN (f)", the images will go through the DCT module first to generate the frequency representation before
being supplied to the CNN backbone, and “(f)" represents the “frequency domain". Finally, we concatenate
features obtained from both networks to generate the final classification score, which is the whole output
network, “CNN (s+f)".

and implements the idea on different FSL models.

2. We investigate the influence of DCT filter size on the few-shot classification and find the

relationship between DCT filter size and classification accuracy.

3. Extensive experiments demonstrate that integrating the features from both the spatial and

frequency domains can significantly increase the classification accuracy in few-shot classifi-

cation.

2.2 Related Work

This part introduces some related work on few-shot learning and deep learning methods in the

frequency domain.
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2.2.1 Few-Shot Learning

Few-shot learning aims to learn to classify query examples from “novel" classes given a few la-

beled support examples from the “novel" classes and abundant labeled support examples from

“base" classes. Recent deep learning based few-shot learning algorithms could be roughly divided

into 4 categories: 1) Data augmentation is a direct data-level method to improve classification ac-

curacy in few-shot learning via mimicking large-scale data algorithms [105, 201, 28, 168], which

is usually added to meta-learners as auxiliary. By generating more positive and/or negative data

according to the given labeled data, more information could be fed to the deep neural network.

2) Metric-learning based method, or learn to compare, is one type of meta-learning based ap-

proach in few-shot learning, which focuses on constructing an appropriate embedding space to

yield corresponding features of images and then calculating the similarity between the features of

given labeled images and test images. Related researches include [97, 134, 122, 98, 164, 154].

3) Optimization-based meta-learning methods [140, 46, 128], or learn to optimize, usually train

another network to get the optimization hyper-parameters to adjust to the few-shot learning sce-

nario that is different from previously fixed hyper-parameters. 4) Another type of meta-learning in

few-shot learning is to use external memories [191, 149].

All approaches mentioned above employ the spatial RGB images as the input of backbones.

However, none of them make use of the frequency representations. In our work, we preprocess the

RGB images with a DCT module to obtain the frequency representations and then input them to

the backbone.

2.2.2 Deep Learning in the Frequency Domain

Frequency-domain based algorithms are widely used in network compression [169, 20], focusing

on modifying the network to yield better efficiency. However, our DCT-based method focuses

on increasing the classifying accuracy by reducing the input size with little modification of the

model itself. The band-limited algorithm presented in [42] shows that the model focuses on lever-

aging lower-frequency components. However, this FFT-based method is more effective on larger
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kernels instead of the most commonly used smaller filters like 3×3 and 1×1 in most neural net-

works. [52] uses DCT coefficients during JPEG encoding which helps to improve the efficiency.

[178] shows that high-frequency channels of DCT could be removed without accuracy loss or

even help to increase the classification accuracy in large-scale image classification. However, none

of the above-mentioned frequency-based algorithms try to jointly exploit the features from both

the spatial and frequency domains. [183] proposes to add spatial-spectral convolution blocks in

convolution layers to learn more powerful representations, while it requires much revision on the

network and extra computations. Moreover, it employs DCT in a different way from ours. Based

on frequency analysis, we propose to explore its effect on few-shot learning by integrating features

from both the spatial and frequency domains.

2.3 Method

2.3.1 Description on Few-shot Learning

Considering a problem of few-shot classification, let Csource and Ctarget denote the source classes

and target classes, respectively, and these two classes are disjoint. In the source classes Csource, we

have abundant labeled samples as the training data Dsource, while only a few labeled data Dtarget are

accessible for each class in the target classes Ctarget . For a k-way n-shot learning problem, where

we have n labeled support samples for k novel classes in Ctarget , our task is to classify a query

sample into one of these k support classes.

2.3.2 Discrete Cosine Transform (DCT)

Inspired by the study [178], we design the DCT pipeline as shown in figure 2.2. To generate the

frequency representation, we perform some pre-processing first, including the standard transfor-

mation as illustrated in [88], rotating, cropping, and translating, and obtain the image with size

Simage in step (a), e.g. 448× 448. Then, similar to the JPEG compression pipeline, we convert

the high-resolution RGB images to YCbCr images, where we follow the 4:2:0 Chroma subsam-
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(a) RGB (b) YCbCr (c) frequency representation (d) reorganized frequency representation (e) final frequency representation

Figure 2.2: (a) images after preprocessing, e.g. 448× 448× 3. (b) transform RGB to YCbCr images, Y:
448× 448, Cr and Cb: 224× 224. (c) frequency representation after DCT transformation with a filter,
e.g. 8x8, (d) reorganize frequency representations by frequency channels, Y: 56× 56× 64, Cb and Cr:
28× 28× 64. (e) upsample all Crdct and Cbdct frequency channels to the same size with Ydct channels and
keep those frequency selected channels. Y: 56×56×16, Cb and Cr: 28×28×4.

pling as shown in step (b) considering the human vision system is more sensitive to brightness (Y)

than color (Cr and Cb). After that, we divide each channel into Sdct × Sdct patches and perform

Sdct × Sdct DCT transformation on each patch, where Sdct is the size of the DCT filter, which is

assigned at (e.g. 8× 8). In this way, we obtain an 8× 8 frequency representation for each 8× 8

patch in each YCbCr channel, with a lower frequency in the left top corner and a higher frequency

in the right bottom corner as illustrated in step (c). Next, for each channel, we reshape these 8×8

frequency patches to cubes by grouping the same frequency to one sub-channel and yield (d). Fi-

nally, from (d) to (e), we first select more impactful frequency sub-channels obtained in [178] from

each YCbCr channel, concatenate them into one frequency cube and then upsample CrCb elements

to the same size of Y element by interpolation, which would be the input of the following deep

neural network. In (e), from left to right, it shows low to high-frequency elements for Y, Cb, and

Cr respectively.

The final input size after the DCT module, the size of (f), would be Simage/Sdct , e.g. 448/8= 56,

and the input size of ResNet is also 56× 56. So we could keep the network the same size by

adjusting Simage and/or Sdct . In this way, we can handle images with a vast range of sizes to keep as

much information from the original images (e.g. when Sdct = 16 and the input size of the backbone
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0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure 2.3: The 8× 8 frequency index after DCT transformation. Each index represents one frequency
component. Low frequencies lie in the top left corner and high frequencies are in the bottom right corner.
We choose the top left square frequency elements as selected frequency channels. Specifically, 4×4 square
for the Y channel and 2×2 for the Cr and Cb channels.

is 56, we could process images with size Simage = 56×16 = 896). The DCT transform of an image

can be denoted by:

D = T MT ′ (2.1)

where M is the Sdct × Sdct image patch after subtracting 128 for each pixel. And T is the DCT

transformation matrix determined by:

Ti, j =


1√
N
, i = 0√

2
N cos (2 j+1)iπ

2N , i > 0
(2.2)

2.3.3 Frequency Channels Selection

According to the study [178], low-frequency elements would be selected more frequently by de-

signing a channel selection module carefully. In our implementation, we choose the following 24

channels obtained in [178] as shown in Figure 2.3: the top left 4×4 square for Y channel and the

top left 2×2 for Cr and Cb channels.
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2.3.4 Network

The framework of the proposed network is illustrated in Figure 2.1. The upper network, “CNN (s)"

denotes a vanilla image classification network where we draw the input layers before the backbone

from the whole CNN and“(s)" means the “spatial domain". In the lower branch, “CNN (f)", images

will go through the DCT module first to obtain the frequency representation before being fed to

the following CNN backbone, and “(f)" represents the “frequency domain". Finally, we integrate

the information from the two domains by concatenating the normalized features obtained from

both networks to output the final classification score, which is denoted as the whole outer network,

“CNN (s+f)".

2.4 Experiments

2.4.1 Datasets and Setup

Datasets. The proposed framework has been evaluated on three popular few-shot learning datasets:

mini-ImageNet, CUB, and CIFAR-FS. 1) mini-ImageNet. This is a popular few-shot learning

dataset first proposed in [164], which samples 100 classes from the original ILSVRC-12 dataset

[142]. For each class, it contains about 600 images. All images are 84×84 RGB colored. In our

experiment, we follow the split in [140], with 64 classes for the training set, 16 classes for the

validation set, and 20 classes for the testing set. Among these, classes from the training, valida-

tion, and testing sets are disjoint. 2) CUB. This dataset was introduced in [173] and it contains

6,033 bird images, 130, 20, and 50 classes for training, validation, and testing, respectively. 3)

CIFAR-FS. This dataset [8] is obtained by randomly splitting 100 classes in CIFAR-100 [87] into

64 training classes, 16 validation classes, and 20 novel classes. All images in this dataset are of the

size 32×32.

Implementation details. For CNN (s) where we input the backbones with images, the input

samples are resized to 224× 224 for ResNet [62] backbones and 84× 84 for WRN-28-10 [195]

on mini-ImageNet and CUB, 32×32 for CIFAR-FS. For CNN (f), the frequency version, images
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backbone method
accuracy on miniImageNet

1-shot 5-shot

ResNet10

MN [164]# 54.49±0.81 68.82±0.65
MN (s)∗ 52.98±0.21 72.41±0.16
MN (f) 55.98±0.20 74.17±0.16
MN (s+f) 57.32±0.21 76.27±0.16

+4.34 +3.86

WRN-28-10

S2M2R[122] 64.93±0.18 83.18±0.11
S2M2R (s)∗ 63.09±0.17 80.88±0.11
S2M2R (f) 63.03±0.18 80.80±0.11
S2M2R(s+f) 66.88±0.18 84.26±0.10

+3.79 +3.38

WRN-28-10

PT+MAP [74] 82.92±0.26 88.82±0.13
PT+MAP (s)∗ 80.73±0.24 87.81±0.13
PT+MAP (f) 82.04±0.23 88.68±0.12
PT+MAP (s+f) 84.81±0.22 90.62±0.11

+4.08 +2.81

Table 2.1: Improvement after integrating features from both the spatial and frequency domains to existing
methods on miniImageNet. The highest accuracy (%) with 95% confidence interval is highlighted. # and ∗
denotes results reported in [19] and our reproduced results to the published ones respectively.

are rescaled to 56× Sdct and the input dimension varies from the number of selected frequency

channels. For example, when we use 8×8 DCT filters, the original images will be 448×448. To

train (s+f), we train (s) and (f) separately first, and then fine-tune the classifier on the integrated

features to get the final classifier for (s+f). This framework can also be trained end-to-end.

2.4.2 Application to Existing Learning Models

In this section, we explore the generalization ability of the proposed approach to other few-shot

learning frameworks.

2.4.2.1 Influence of the integrated features

We integrate the proposed strategy to the following few-shot learning frameworks on mini-ImageNet:

the Matching Network (MN) [164] (metric-based algorithm), S2M2R [122] (pre-train and fine-

tune), and PT+MAP [74] (post-process S2M2R features). The input is 84×84 for the spatial branch
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method backbone miniImageNet CUB-200-2011 CIFAR−FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet∗ [154] ConvNet 50.37±0.83 67.33±0.67 66.36±1.00 82.03±0.59 55.5±0.70 72.0±0.60
MAML∗ [46] ConvNet 50.96±0.92 66.09±0.71 66.26±1.05 78.82±0.70 58.9±1.9 71.5±1.0
RelationNet∗ [156] ConvNet 51.84±0.88 64.55±0.70 64.38±0.94 80.16±0.64 55.0±1.0 72.0±0.60
S2M2R [122] WRN-28-10 64.93±0.18 83.18±0.11 80.68±0.81 90.85±0.44 74.81±0.19 87.47±0.13
AFHN [100] ResNet18 62.38±0.72 78.16±0.56 70.53±1.01 83.95±0.63 - -
DPGN [186] ResNet12 67.77±0.32 84.60±0.43 75.71±0.47 91.48±0.33 77.90±0.50 90.20±0.40
PT+MAP [74] WRN-28-10 82.92±0.26 88.82±0.13 91.55±0.19 93.99±0.10 87.69±0.23 90.68±0.15
PT+MAP(s+f) WRN-28-10 84.81±0.22 90.62±0.11 95.48±0.13 96.70±0.07 89.50±0.21 92.16±0.15

Table 2.2: Comparison with the state-of-the-art on mini-ImageNet, CUB, and CIFAR-FS. The highest accu-
racy (%) is highlighted. * means results for miniImageNet and CUB-200-2011 datasets are from [19], and
results for CIFAR-FS are from [8].

to yield a fair comparison with previous results and 448×448 for the frequency domain. All images

are pre-processed with data augmentation during training. The results are shown in Table 2.1. It is

evident that the proposed scheme (s+f) promotes the accuracy by about 2.8-4.3% in all cases com-

pared with the original version (s) of the models. This shows that the integrating features from both

domains work for different frameworks and its improvement is not limited to fine-tuning based or

metric-learning based methods. Another interesting observation is that when we train S2M2R (f),

the rotation loss decreases to less than 0.1 rapidly within a couple of epochs. This might be be-

cause the rotation trick can work for spatial input while failing when it comes to frequency input,

which might also explain that S2M2R (s) works better than S2M2R (f). This set of experiments

demonstrates that the integrated features can work for different few-shot classification frameworks

in which the single-frequency branch functions differently for different algorithms.

2.4.2.2 Comparison with the state-of-the-art

We compare the proposed network (s+f) with the state-of-the-art on the benchmarks. PT+MAP

[74] proposes to leverage the learned features to Gaussian-like distribution and add it to the network

S2M2R [122]. Since the proposed strategy is designed in a preprocessing way, making it possible

to combine it with any network. We implement our method to PT+MAP and name it by adding

“(s+f)" to the models we use. The images are resized to 84×84 and 448×448 for the spatial and

frequency input respectively. 8×8 DCT filter with static frequency channel selection is employed.

The results are shown in Table 2.2. It is evident that our method can increase the accuracy
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of the state-of-the-art by a large margin for all datasets we tested, including mini-Imagenet, CUB

datasets, and CIFAR-FS. In all three datasets, PT+MAP achieves the best performance in terms

of accuracy. For mini-Imagenet, our approach increases the best accuracy by 1.89% and 1.8% for

5-way 1-shot and 5-way 5-shot, respectively. For the CUB dataset, the accuracy is increased by

3.93% and 2.71% respectively for the two tasks. Please note that for the CIFAR-FS dataset, the

image size is small, only has 32×32. However, we still observe 1.81% and 1.48% increases for the

two tasks, respectively.

2.4.3 Ablation Study

2.4.3.1 Few-shot learning with DCT

In this section, we first validate the effectiveness of DCT module and integrated network by com-

paring baseline++ (s), baseline++ (f) and baseline++ (s+f) w/o data augmentation during training

on miniImageNet, where baseline++ [19] uses all images from base classes to pre-train and then

fine-tune with a few support samples from testing set before testing. The only difference between

the baseline [136] and baseline++ is that the baseline uses a linear classifier while baseline++ cal-

culates cosine distance. The backbone we choose for feature extraction is ResNet 34. Both 5-way

1-shot and 5-way 5-shot image classification tasks are evaluated. For data augmentation during

training, we performed random crop, left-right flip and color jitter as in the paper [19]

method
data miniImageNet

augmentation 5-way 1-shot 5-way 5-shot
baseline++ (s) No 48.54±0.17 61.58±0.13
baseline++ (f) No 53.27±0.19 65.65±0.13
baseline++ (s+f) No 54.76±0.18 68.76±0.13
baseline++ (s) Yes 57.94±0.18 73.98±0.13
baseline++ (f) Yes 59.22±0.18 76.58±0.13
baseline++ (s+f) Yes 62.75±0.18 79.73±0.12

Table 2.3: Results on miniImageNet with different inputs as shown in Figure 2.1. The backbone is ResNet34.
Top left square 24 channels as illustrated in Figure 2.3 are selected for frequency versions. The highest
accuracy (%) is highlighted.
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The experimental results are shown in Table 2.3, from which we can see that the accuracy of

baseline++ (f) is higher than baseline++ (s) by 4.73% and 1.28% respectively for 5-way 1-shot

classification task without and with data augmentation during the first training phase, 4.07% and

2.6% for the 5-way 5-shot task. The baseline++ (s+f) in all cases further increases the classification

accuracy by 1.5-3.5 %, showing that baseline++ (f) is not just an improvement of baseline++ (s)

but a complementary method of it and learning from both the spatial and frequency domain could

increase the classification accuracy.

2.4.3.2 Influence of original information quantity

For the DCT branch, the network has more flexibility to choose image size with the existence of the

DCT module, even taking larger images compared with the spatial version. To explore the effect of

information quantity the frequency branch takes, we conducted experiments on miniImageNet. The

backbone of the frequency branch is ResNet 10 to save time and data augmentation is employed

during training. The results are tabulated in Table 2.4. For the first two parts in the table, we

preprocess images for baseline++ (f) with the same data augmentation method as the baseline (s)

to generate 84×84 and 224×224 images. Then, we upsample these images to 448×448 to exploit

the DCT module. For the bottom part of this table, we resize the images directly to 448×448 to

include more original information.

From the table, we can see that, when baseline++ (s) and baseline++ (f) utilize the same in-

formation from the original images, baseline++ (s) performs better than baseline++ (f) when the

image is 84× 84 but worse for image size 224× 224, which means (f) holds the potential to per-

form better with fewer parameters than (s) when inputting enough information. When we input

baseline++ (f) with more information than baseline (s), 448 instead of 224, the accuracy for (f) gets

slightly improved, 0.9 % for 1 shot and 0.06 % for 5 shots. We think the reason is the information

quantity is more and more approaching the amount needed by the current frequency backbone.

Moreover, in all cases baseline++ (s+f) performs better than both baseline++ (s) and baseline++

(f), which means that the spatial and frequency representation are complementary to each other.
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method
image miniImageNet
size 5-way 1-shot 5-way 5-shot

baseline++ (s) 84 52.32±0.17 68.24±0.14
baseline++ (f) 84→448 49.47±0.17 65.64±0.12
baseline++ (s+f) N/A 56.32±0.17 75.70±0.13
baseline++ (s) 224 57.52±0.17 75.56±0.13
baseline++ (f) 224→448 58.71±0.17 76.55±0.12
baseline++ (s+f) N/A 62.23±0.18 80.08±0.12
baseline++ (s) 224 57.52±0.17 75.56±0.13
baseline++ (f) 448 59.61±0.18 76.61±0.12
baseline++ (s+f) N/A 62.30±0.18 79.93±0.11

Table 2.4: Results on miniImageNet with different information quantity supplied to the frequency channel
as shown in Figure 2.1. The backbone is ResNet 10 and data augmentation when training is implemented.
The highest accuracy (%) is highlighted.

To conclude, we can use larger images (if we can access them) to increase the accuracy by using

the DCT module, and integrated features can always improve the performance no matter whether

the frequency branch can access larger images compared to the spatial branch.

2.4.3.3 Different DCT filters and selected channels

In this experiment, we explore the effect of different sizes of DCT filters, 2, 4, 6, and 8, and

different selected channels, 24 channels and all frequency channels as shown in Table 2.5. The

backbone is ResNet18. For (f) version, the number of channels is 24 and Sdct ×Sdct ×3 when we

select 24 and all channels respectively, e.g. when the DCT filter size is 4, Sdct = 4, the number of all

channels will be 4×4×3 = 48, where 4×4 is the size of DTC module and 3 is from Y, Cr and Cb

channels. For the spatial branch, we use all 224 as the image size. For the DCT branch, we resize

images to 56× Sdct directly, e.g. if Sdct = 4, the input is rescaled to 56× 4 = 224. Experiments

with and without data augmentation during training are evaluated.

According to Table 2.5, all baseline++ (f) methods outperform their corresponding baseline++

(s) version without the DCT module, even when the DCT filter size is as small as 2×2. When all

frequency channels are employed, we find the accuracy is increased with the increase of the size

of the DCT filter no matter there is a data augmentation or not for the 5-way 1-shot classification.
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method trainaug
DCT

channels
accuracy on miniImageNet

filter size 5-way 1-shot 5-way 5-shot
baseline++ (s) False - 64 48.40±0.17 62.94±0.13
baseline++ (f) False 2 all (12) 49.05±0.17 65.45±0.13
baseline++ (f) False 4 all (48) 49.67±0.18 65.07±0.13
baseline++ (f) False 6 all (108) 49.70±0.17 64.51±0.13
baseline++ (s) True - 64 56.48±0.17 74.00±0.13
baseline++ (f) True 2 all (12) 57.79±0.17 75.50±0.12
baseline++ (f) True 4 all (48) 58.41±0.17 76.01±0.12
baseline++ (f) True 6 all (108) 58.98±0.17 75.39±0.12
baseline++ (f) False 4 24 50.11±0.17 63.91±0.13
baseline++ (f) False 6 24 50.72±0.18 64.86±0.13
baseline++ (f) False 8 24 51.04±0.18 65.76±0.13
baseline++ (f) True 4 24 58.02±0.18 75.73±0.13
baseline++ (f) True 6 24 57.74±0.17 75.66±0.12
baseline++ (f) True 8 24 58.25±0.18 76.23±0.13

Table 2.5: The effect of different sizes of DCT filters and whether we select frequency channels with back-
bone ResNet18 on miniImageNet. The number of channels denotes the channels before the backbone with
the input layers removed, e.g. for ResNet, the input before the basic backbone is 56×56×64. The highest
accuracy (%) is highlighted.

However, the increase is very small, and for 5-way 5-shot task, we do not observe this trend,

and the baseline++ (f) with Sdct = 2 even outperforms other filter sizes when there is no data

augmentation. On the other hand, when only the top left 24 frequency channels are employed, the

accuracy increases mildly with that of the filter sizes for both 5-way 1-shot and 5-way 5-shot.

From these observations, we can see that the filter size has little influence on the few-shot

classification when we perform static frequency channel selection. The influence is neglectable in

comparison with the influence of data augmentation. In this experiment, DCT filter size 6 with all

channels and data augmentation achieves the best performance for the 5-way 1-shot task, and DCT

filter size 8 with 24 channels and data augmentation achieves the best performance for the 5-way

5-shot task. However, the increase is not significant. In practice, we can simply choose a small

filter size to save the computation cost.
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backbone method
accuracy on miniImageNet

1-shot 5-shot

ResNet10
baseline++ (s) 57.52±0.17 75.56±0.13
baseline++ (f) 59.61±0.18 76.61±0.12
baseline++ (s+f) 62.30±0.18 79.93±0.12

+4.78 +4.37

ResNet18
baseline++ (s) 56.48±0.17 74.00±0.13
baseline++ (f) 58.52±0.18 76.23±0.13
baseline++ (s+f) 61.66±0.18 79.70±0.12

+5.18 +5.70

ResNet34
baseline++ (s) 57.94±0.18 73.98±0.13
baseline++ (f) 59.22±0.18 76.58±0.13
baseline++ (s+f) 62.75±0.18 79.73±0.12

+4.81 +5.75

Table 2.6: Results on miniImageNet with different backbone networks when we implement different input
versions, (s), (f) and (s+f), as shown in Figure 2.1 to baseline++. The highest accuracy (%) is highlighted.

2.4.3.4 Integrated features with different backbone

In this section, to verify the impact of integrated features under different backbones, we imple-

ment different versions of baseline++, (f) and (s+f), with the backbone ResNet10, ResNet18, and

ResNet34 as shown in Table 2.6. Image size for (s) and (f) is 224 and 448 respectively. 8×8 DCT

filters and static channel selection are implemented. In all cases, baseline++(f), when we prepro-

cess images with the DCT module, outperforms all baseline++ (s) when there is no DCT module.

Furthermore, in both tasks (5-way 1-shot and 5-way 5-shot classification) and for all backbones

(ResNet10, ResNet18, and ResNet34), the baseline++ (s+f) version achieves the best performance

compared with baseline++(f) and baseline++(s), and the accuracy is improved by a margin of 4-

6% compared with their vanilla versions, baseline++(s). This further verifies that learning from the

frequency domain is a complementary method of learning from the spatial domain and integrating

both features could further increase the classification accuracy. The experiment also demonstrates

the effectiveness of the proposed approach on different backbone networks.
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(a) (b)

Figure 2.4: t-SNE feature visualization results. (a): baseline++(s). (b): baseline++(s+f).

2.4.4 Feature Visualization

To visually understand the feature we learned from the whole framework, the t-SNE visualiza-

tion [121] is shown in Figure 2.4. The features for (a) and (b) are learned from baseline++ with

backbone ResNet 10, specifically baseline++(s) and baseline++(s+f). 5 novel categories are se-

lected randomly and 80 samples for each class are employed. It can be observed from Figure 2.4

that the clustering results by integrating features from both the spatial and frequency domains are

more compact than those from only the spatial domain, which further verifies the effectiveness of

integrating both domains in improving the clustering ability.

2.5 Conclusion

In this chapter, we have proposed to integrate the representations from both the spatial and fre-

quency domains to increase the performance of few-shot classification. Through extensive exper-

iments, we have demonstrated that the frequency information is complementary to feature repre-

sentation, and integrating the features learned from both the spatial and frequency domains can

significantly increase the performance of few-shot learning. The proposed strategy can act as a

plug-in module for other few-shot learning models to increase their classification accuracy.
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Chapter 3

Data Efficiency: Explicitly Increasing Input Information

Density by Decreasing Input Noise

Besides increasing input information, data efficiency can be achieved by reducing data noise and

hence increasing data quality. Data quality for machine learning models is different from the image

quality for human eyes. For models, high-quality data should contain less noise or duplicate images

to make the model more robust to various data, e.g. higher information density. This chapter gets

inspiration from image compression to increase information density and then feeds the dense input

into vision transformers directly to mimic language models [23].

3.1 Introduction

ResNet [62] and its variants have been widely used in computer vision tasks in the recent decade

due to their superior performance from introducing inductive bias [12, 132, 188]. However, con-

volutional layers on the other hand limit its ability to capture global relations. Vision Transformer

(ViT) [40], as an emerging alternative backbone to ResNet in computer vision, expands the net-

work representation capacity by including global attention with multi-head self-attention modules,

which shows better performance compared with ResNet in large-scale datasets like ImageNet [37]

after pretraining on larger datasets JFT-300M [155]. However, the lack of locality in ViT results

in worse generalization on small datasets compared with ResNet [24, 95, 49]. To release its de-

pendency on more data and accelerate convergence, researchers try to add convolutional layers to

transformers [51, 55, 175, 177]. However, none of them solve this by increasing input density

directly.
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As noticed in [61], transformers originate from Natural Language Processing and the main

difference between languages and images is information density. This reminds us to increase the

token information density of image input to close the gap and better generalize vision transformers

on image tasks. To achieve this, the principle of image compression can be utilized. Image com-

pression is a widely explored task, aiming at transforming images from spatial domain to another

domain to reduce storage and transmission costs, while keeping as much information as possible.

JPEG is one of the popular Discrete Cosine Transform (DCT) based image compression algo-

rithms, keeping about 95% information while high compressibility by reducing a large amount of

less informative high-frequency details in its quantization process, increasing the information den-

sity in the frequency domain. Inspired by this, we propose to feed vision transformers with dense

information in the frequency domain to approach the dense word embedding in NLP. Specifically,

we perform block DCT on YCbCr images and then remove up to 174 non-functional frequency

channels (192 in total) based on the channel-wise heatmaps. This channel selection increases input

density greatly by decreasing the size of input greatly while keeping most information, making it

closer to word embedding in NLP and better generalizing vision Transformers on small datasets.

The major contributions of this chapter are as below:

1. We first propose to explicitly increase the input information density in vision Transformers

to close the gap between language and image input.

2. To form the dense input, we design a simple yet effective channel-wise heatmap-based strat-

egy to select useful DCT frequency channels. Compared with the static shape-based channel

selection strategy in previous work, our selection keeps fewer channels while showing better

results for the Swin Transformer.

3. Experiments on Tiny ImageNet [93], CIFAR-10/100 [87], Flowers-102 [129] and SVHN

[127] with backbones Swin Transformer [108] and Focal Transformer [184] demonstrate the

effectiveness of learning in the DCT frequency domain with vision Transformers.
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3.2 Related Work

This section includes some most related work regarding vision transformers and deep learning in

the non-RGB domain.

3.2.1 Vision Transformers

Vision Transformers have received a lot of attention and applications in recent years [48, 120,

131, 145]. However, the original Vision Transformer, ViT, requires a large amount of data to

learn local properties. To handle this, some researchers manage to integrate convolutional lay-

ers in different modules of vision Transformers, e.g. token or backbones, to capture both local

and global information of the image and accelerate convergence considering that token embed-

dings can be mapped into fixed positions of the input images. For instance, [177] replaced the

patch-based token preprocessing with several small-size convolutional layers directly and found

a better, faster, and more robust convergence compared with the original ViT. In addition to this,

LeViT [51], CMT [55] and CeiT [192] also used a convolution-based tokenization on top of trans-

former blocks. Others add convolutional layers in the middle of Transformer backbones, e.g. CvT

[175] employed squeezed convolutional projection in replace of linear projection to obtain keys/-

queries/values for multi-head attention in transformer blocks, LocalViT [103] added depth-wise

convolution layer to the feed-forward module in transformer blocks and CoaT [181] implemented

a depth-wise convolution-based position encoding in the multi-head attention layer. Another folder

to accelerate convergence is to design pyramid-like structure modelling CNN backbones, including

PVT [167], Swin Transformer [108], MViT [45], NesT [208] and LiT [130]. However, these works

focus on extracting diverse features based on the low information density images themselves and

put feature extraction pressure on the networks. Instead, this work explicitly increases the input

information density at the beginning, undertakes some responsibility from the networks, and fills

the gap between languages and images.
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3.2.2 Learning in non-RGB domain

Although most computer vision algorithms are RGB image-based, there are some efforts to explore

learning in other domains. One popular domain is from one stage in the JPEG encoding and decod-

ing process. JPEG format is widely employed to compress images to save the cost of transmitting

and storing images. In the encoding stage, it consists of converting RGB images to YCbCr, quan-

tifying block DCT (where information loss happens), and encoding with Huffman. The decoding

process is just the inverse. Normally, the widely used RGB image input is the output after decod-

ing JPEG images. [52] proposes to learn from the quantified DCT domain in the decoding stage,

i.e. feed the quantified DCT coefficients to the network directly before they are converted back

to the RGB domain, accelerating convergence by removing the decompressing process to trans-

form DCT representation back to image pixel and learn similar feature with its first layers. [44]

formulates deep learning in JPEG transform domain, representation after quantifying the DCT co-

efficient in the encoding stage, and shows the equivalence after conversing models learning on the

RGB domain to this intermediate JPEG domain. [50] incorporates DCT transformation on the fea-

ture generated by the first convolutional layer, speeding up convergence a lot compared with using

standard CNN. The most relevant work is [179], which proposes to learn from an earlier stage,

block DCT domain before quantization, and then disregard learnable useless frequency channels

to save communication costs between CPU and GPU. However, [179] designs some learnable pa-

rameters and Gumble sampling to select channels while it turns out to be a square shape-based

selection strategy works a little bit better. Differently, this work employs GradCAM heatmap to

check functional channels directly, which is simpler, more intuitive and more efficient.

3.3 Method

The proposed framework is shown in figure 3.1. In this section, we will introduce the details of each

preprocessing module, including the block DCT, channel-wise heatmap-based channel selection

strategy, and the relationship between frequency channel selection and information density.
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Figure 3.1: Vision Transformer (ViT), Swin Transformer, and our Dense DCT-based vision Transformer. In
our dense DCT pre-processing, RGB images are resized to 448×448 so that the output size of DCT remains
the same, i.e., 56×56. Then, the frequency representation with all 192 frequency channels goes through their
channel selection based on the heatmap results, and a dense frequency representation with only 18 channels
is obtained. The attention module is optional for the dense frequency representation to pass through directly
before the Transformer block. Finally, to keep the input channel and following Transformer blocks the same,
we pass the 18-channel input to a linear layer and get 96 channels as in Swin Transformer.

3.3.1 Block DCT

Block DCT is applied as in [179] and its illustration can be found in Figure 3.2. First, we convert

the RGB images into YCbCr representation. Then, apply DCT transformation on each small block

(e.g. 8× 8) of the YCbCr component. After that, we reorganize DCT coefficients from the same

frequency to one channel keeping block positions. Finally, we remove useless frequency channels

after applying the channel selection strategy. As the human visual system is more sensitive to

luminance component Y than the color components Cb and Cr, we downsample the Cb and Cr

components as in JPEG compression in step (b) and then upsample them in step (d).

3.3.2 Channel-Wise Heatmap

To learn better from the DCT frequency domain, [179] utilized a Gumbel softmax-based fea-

ture selection algorithm to reduce input channels while they found their shape-based (i.e., top left
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224x224
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224x224

448x448

RGB2YCbCr

DCT

DCT
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F : fold or reorganize
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Figure 3.2: Block DCT illustrated by 8×8 DCT transformation. (a) The resized RGB images. (b) Convert
RGB images to YCbCr with Cb and Cr channels downsampled. (c) Perform patch-based non-overlapping
DCT for all 3 channels. (d) Rearrange the same frequency from all positions to the same channel. (e)
Upsample Cr and Cb channels and then select frequency channels.

square) fine selection strategy achieves competing performance compared with the keeping learned

frequency channels from feature selection algorithm. However, shape-based selection in the fre-

quency domain lacks interpretability. Instead, we propose a channel-wise heatmap-based channel

selection strategy as shown in 3.4.

GradCAM [151] is a method used to find the functional region of an image input in CNN by

relating the output high-level features with their input positions. However, for input with multiple

meaningful channels, different input channels might function differently as in [179]. To evaluate

how each input contributes to the final high-level features, we mask out all channels except the

candidate channel and then calculate the GradCAM heatmap, i.e., channel-wise heatmap.

Specifically, frequency representations with full frequency channels, i.e. 192 for 8×8, are fed

into a ResNet50 backbone with cosine classifier as shown in Figure 3.3. After that, to obtain the

channel-wise heatmap, keep only one candidate frequency channel of the frequency representation

and set other channels to 0 as shown in Figure 3.4. Then, we pass the revised frequency represen-

tation into the pretrained model and calculate the GradCAM heatmap. Following the same process

in Figure 3.4, each image has 192 heatmaps (for 8× 8 block DCT), and each heatmap is 56× 56

following block position layout.

In this way, we calculate the average channel-wise heatmap of images from the training set

and then average across all 56× 56 positions for each channel heatmap. The results for 8× 8
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Figure 3.3: Training pipeline to calculate the channel-wise heatmap.

block DCT can be found in Figure 3.5, where each frequency channel has only one value. This

result is surprisingly consistent with the one from the channel selection network proposed in [179],

while our method requires no extra parameters. This indicates that the channel selection network in

[179] is indeed learning functional channels as supposed. Finally, to select kept frequency channels

and get dense DCT input, we simply set thresholds based on values in Figure 3.5 and remove the

channels that have no contribution to the performance. Frequency channels in red blocks are our 18

kept channels after comparing with the accuracy from different thresholds, and those 24 channels

within yellow squares are based on the square channel selection strategy concluded in [179].

3.3.3 Frequency Channel Selection and Information Density

In DCT transformation, top left corner represents lower frequencies and bottom right are the higher

ones. To visualize the energy distribution, we go through all frequency channels following the zig-

zag route as shown in Figure 3.6 and get Figure 3.7. Figure 3.7 we know, that most energies are

pushed to sparse and low-frequency channels (top left on Figure 3.6) and most high-frequency

channels have only few energy (which is also the principle for JPEG compression to disregard

those zero channels after quantization). According to Figure 3.7, most selected channels (denoted

by red dots) also lie on the low-frequency part. This indicates that, after channel selection, the

overall information entropy is slightly reduced, while the size of the frequency representation is

significantly decreased, i.e. the average information entropy or the information density is increased

greatly.
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Figure 3.4: Calculate the input channel-wise heatmap for one image based on pretrained model in 3.3.
8×8 DCT preprocessing on the RGB image results in a tensor with full 192 frequency channels. Then all
channels except the candidate are set to zeros. The GradCAM heatmap is calculated based on the masked
tensor and the model trained with full frequency channels and yields the input channel-wise heatmap for the
candidate channel, e.g., channel 0 in this figure.

3.4 Experiments

3.4.1 Setup

Dataset Information 5 small datasets are employed to test the image classification performance

of our framework, Tiny ImageNet [93], CIFAR-10/100 [87], Flowers-102 [129], and SVHN [127].

More details of these datasets are shown in Table 3.1.

Training Setup Data augmentation methods we used include CutMix [194] and Mixup [202]

as in [106]. The initial learning rate is set to 5e−4 and 20 epochs warmup. We report the best

top-1 accuracy after 100 epochs. The batch size is 128 per GPU and four A100 GPUs are used

in total. Following [106], we resize all images to 3×224×224 on all datasets to get our baselines

and resize all images to 3×448×448 unless otherwise specified. For a fair comparison, all vision

Transformer backbones we selected have a comparable amount of parameters with ResNet50.
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Figure 3.5: Averaged channel-wise GradCAM heatmaps for 8×8 by averaging all 56×56 for 8×8 positions
in all training images from the same frequency channel. Channels in red are 18 selected channels using our
method and those in yellow are 24 channels based on the method in [179].

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 56 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

low

high

Figure 3.6: Zig-zag route for 8×8 DCT transformation.

3.4.2 Results

Among these 5 datasets, CIFAR-10/100 and SVHN datasets have the smallest image size, 32×32,

compared with Tiny ImageNet and Flowers-102, holding less raw information, while the image

size for Flowers-102 is greater than 500. We first test our dense DCT token with Swin Transformer

[108] and Focal Transformer [184]. From Table 3.2, we can see an obvious performance gap

between ResNet50 [62] and vision Transformers, including Deit-S [158], T2T [192], Swin [108]

and Focal Transformer [184] on all datasets. With the proposed dense DCT input, the gap is

significantly reduced and the performance is close to ResNet. For Swin Transformer, our dense

DCT input achieves 4.80% improvement on CIFAR-100 compared with RGB input and up to

17.05% on the Flowers-102 dataset. We have achieved a 17.02% increase on Flowers for Focal-

Tiny transformer.
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Figure 3.7: Energy distribution across all 192 frequency channels from Y, Cb and Cr components.

Dataset Train split Val split Size Class #
Tiny ImageNet 100,000 10,000 64 200
CIFAR-10 50,000 10,000 32 10
CIFAR-100 50,000 10,000 32 100
SVHN 73,257 26,032 32 200
Flowers-102 2,040 6,149 > 224 102

Table 3.1: Dataset information for classification on small datasets

In addition, we also add an attention module, Coordinate Attention [69], in our experiments

as illustrated in 3.1. From Table 3.2, we can still see an increase for some backbones, e.g. Swin

Transformer with Dense DCT further increases 0.31% on CIFAR-10 dataset after adding the at-

tention module and the attention module also adds 0.32% to Focal Transformer with Dense DCT

input on Tiny-ImageNet. However, it may harm the performance sometimes, e.g. also for the Focal

Transformer on SVHN dataset, it decreases the accuracy by 0.90%.

3.4.3 Ablation Study

In this section, we check how each component of the proposed approach affects the performance,

including the channel selection strategy, attention module on the input frequency domain, and

resizing. We further study how resizing influences accuracy.
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Backbone Param.# CIFAR-10 CIFAR-100 SVHN Tiny IMG Flowers
ResNet50[62] 25M 92.77 73.24 96.78 63.43 41.34

Deit-S[158] 22M 81.79 59.11 90.64 50.09 37.71
T2T-ViT-14[193] 22M 87.58 67.22 96.53 55.97 23.81
Swin-Tiny [108] 28M 81.91 62.30 91.29 56.28 32.04

DenseDCT_Swin-T 28M 84.20 67.10 95.65 57.36 49.09
(+2.29) (+4.80) (+4.36) (+1.08) (+17.05)

DenseDCT_Swin-Tattn 28M 84.51 67.19 95.25 57.59 48.21
(+0.31) (+0.09) (-0.40) (+0.23) (-0.88)

Focal-Tiny [184] 29M 88.31 71.58 95.97 63.06 32.54
DenseDCT_Focal-T 29M 89.59 73.94 96.13 64.11 49.56

(+1.28) (+2.36) (+0.16) (+0.51) (+17.02)
DenseDCT_Focal-Tattn 29M 89.62 73.49 95.23 64.43 49.40

(+0.03) (-0.45) (-0.90) (+0.32) (-0.16)

Table 3.2: Top 1 classification accuracy on CIFAR-10/100, SVHN, Tiny ImageNet and Flowers-102 dataset

Input Size Patch Size Input size Channel # Resize Attn Top-1 ↑ (%)
RGB 224 4 56 — ✓ — 56.28
RGB 448 8 56 — ✓ — 55.59
DCT 64 8 8 192 (all) — — 38.50
DCT 448 8 56 192 (all) ✓ — 53.11(+14.61)
DCT 448 8 56 24 [179] ✓ — 57.02(+3.91)
DCT 448 8 56 18 ✓ — 57.36 (+0.34)
DCT 448 8 56 18 ✓ ✓ 57.59 (+0.23)

Table 3.3: Ablation study on Tiny ImageNet with Swin Transformer backbone. For Tiny ImageNet, the
original image size is 64. ‘Attn’ here means adding Coordinate Attention on the DCT input directly

3.4.3.1 All Components

This experiment is based on the Swin Transformer backbone on the Tiny ImageNet dataset. Ac-

cording to the results by setting the threshold to their heatmaps, we select 18 channels for our dense

DCT representation. The attention module we employed here is Coordinate Attention [69].

The results are shown in Table 3.3, where ‘size’ in the second column represents the resizing

in Figure 3.1 at the beginning. ‘Input size’ and ‘Channel #’ denote the height (equal to the width)

and the number of channels of the input embedding before the Transformer blocks in Figure 3.1

separately. From the results, we can see that the DCT input with all 192 channels and no resizing
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on the input yields a bad result, 38.50%. However, after resizing, it becomes 53.11%, increased

by 14.61%. The channel selection strategy further improves the performance due to the increase

in information density. The proposed heatmap-based channel selection achieves 57.36%, 0.34%

greater than the shape-based channel selection strategy in [179] with 6 fewer input channels. To

exclude the influence of larger image size between RGB input and DCT input, we also resize the

RGB version to 448 and use 8 patches in the input embedding layer to get the same input size as

DCT input, i.e. 56×56, as shown in row 3. However, resizing to 448 decreases the performance

from 56.28% to 55.59%, inferior to the resizing in frequency domain 57.36%. Based on these

results, we fix the image size to 224 with patch size 4 when training RGB input versions in Table

3.2. Finally, the attention module also brings a 0.23% increase, indicating the potential to add the

attention module to the input images.

Dense DCT holds some interesting properties. 1) No convolution layer or linear layer on

the input layer. The combination of DenseDCT input with Transformers or pure MLP networks

makes the whole network more explainable, i.e., the whole framework is literately a function of

DCT features, instead of any unknown features from convolution layers or the combination of low

semantic pixels. 2) Higher semantic information makes it possible to perform attention at the early

stage, literally the raw data since DCT transformation is invertible. 3) Taking larger input images

with the same backbone as the Swin Transformer. The whole network can benefit a lot from larger

input images, either from the original larger image to take more information or from resizing as

shown above. However, there is still some space for improvement. For instance, both our heatmap-

based method and dynamic/shape-based method in [179] take static input channel, while as shown

in Figure 3.4, functioning channels vary from the final selected channels when it comes to every

single image, e.g. channel 1 for Cb component in Figure 3.4 is selected considering the overall

performance for the whole dataset according to 3.5, while activated channel 24 is removed. This

compromise indicates included redundancy and encourages us to design a customized dynamic

channel selection strategy to further improve useful input information density.
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Threshold 0.08 0.07 0.06 0.03 0.022 0.02 0.01 0.000 all
Channel # 17 18 21 22 24 25 28 41 192
Top-1 (%) 56.34 57.36 57.11 57.03 56.86 57.02 56.89 56.94 53.11

Table 3.4: Effect of setting different threshold in input channel-wise heatmap (8×8)

3.4.3.2 Effect of Selected Channels

In this experiment, we show the results by setting different thresholds to the input channel-wise

heatmap obtained by training 8×8 DCT full frequency channels, i.e., 192, and making all channels

except the candidate one as in Figure 3.4. As shown in Table 3.4, even with channels 18, 21 and

22, which are less than 24 from the shape-based static channel selection strategy in [179], we also

achieve higher accuracy, 57.36, 57.11 and 57.03, compared to 57.02 as shown in Table 3.3. Based

on the experiment, we choose 18 channels in our implementation of 8×8 DCT transformation,

which happen to be the low-frequency channels according to the heatmap. Apart from these, the

accuracy for 17 channels is 56.34 while it’s 57.36 for 18 channels, increasing 1.02. This vital

channel is the DC component for the Y component.

To check what are those deleted frequency channels and how they affect the RGB images,

we visualize some images from the Flowers-102 and Tiny-ImageNet as shown in the Appendix.

From the visualization, we know that most information is kept even after deleting many frequency

channels, from 192 channels to 24 or 18, and only some high-frequency details are lost. This

can also be found in columns 3 and 5, where removed information forms contours. Besides this,

we also checked the effect of blocks where we calculated the GradCAM, classifier, epochs, and

datasets as shown in the Appendix. We found that heatmaps from Flowers-102 tend to focus on

different higher frequencies compared with heatmaps from Tiny-ImageNet and CIFAR-10.

3.4.3.3 Effect of Resizing

In this section, we analyze the effectiveness of resizing and show the results in Table 3.5, where

the window size is set to 8 to adapt to all resizes in the table. Since the input tensor before the

Transformer blocks of the Swin Transformer is associated with the window size in the attention
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Resize Ratio 1 2 4 8
Image Size 64 128 256 448
Accuracy 40.49 49.30 54.89 56.44

Table 3.5: Analysis of resizing for DCT input and Swin Transformer.

module inside the Transformer blocks, i.e., should be divisible by the window size, and resizing

can affect the shape of the input tensor, we fix the window size to 8 and set resize ratio to 1, 2,

4 and 8 in this experiment to control variables and 18 selected channels from previous results. In

Table 3.5, the first row denotes the resizing ratio compared with the original image 64 on Tiny

ImageNet (ratio 1 indicates no resizing).

From 3.3 we can see that resizing brings 14.61% improvement, from 38.50% to 53.11%. The

same effect is also observed in Table 3.5. The accuracy is increased from 40.49% using origi-

nal images with size 64 to 56.44% after resizing to 448. Both results indicate that resizing is a

significant preprocessing method for training in the DCT frequency domain. The effect of resiz-

ing is illustrated in 3.8. Suppose that the size of the original image is 8×8 before resizing, and

an 8×8 DCT is performed on the whole image. While if we resize it to 16×16, the same DCT

window only covers one-quarter of the original image, which means sparser features embedded in

the image are processed by DCT. The resizing preprocess would better separate the useful infor-

mation from redundant information in the original image and promote further channel selection.

Moreover, with smaller raw image blocks after resizing, position information is more accurate and

approaches actual positions within each block since block DCT misses position information within

blocks.

More Analysis: The appendix provides more analysis of the effect of deleted frequency chan-

nels on the RGB images and the influences of channel-wise heatmaps w.r.t. classifiers, blocks, and

epochs.

3.4.4 Visualization

To check what are those deleted frequency channels and how they affect the RGB images, this
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resize

Figure 3.8: The effect of resizing.

section visualizes some images from the Flowers-102 (first 2 rows) and Tiny-ImageNet (since the

third row) as shown in Figure 3.9. The first column represents the original images, IDCT24 and

IDCT18 denote the inverse DCT results of the final kept frequency representations in Figure 2 in

Section 3.1. From columns 2 and 4 we know, that most information is kept even after deleting

many frequency channels, from 192 channels to 24 or 18, and only some high-frequency details

are lost. This can also be found in columns 3 and 5, where removed information forms contours.

3.4.5 A Closer Look at Channel-Wise Heatmaps

This section explores what influences the channel-wise heatmaps and how they change them. All

experiments are based on 100-epoch training and heatmaps in this section are calculated on 256

images (1 batch) for demonstration.

We first checked the effect of backbones. Following the same setting as in Figure 3 in Section

3.2, ResNet50 and Deit-S are trained. ResNet50 returns a concentrated heatmap as in Figure 5 in

Section 3.2 while Deit-S heatmaps are scattered. Based on this, we used ResNet50 for all channel

selections. In this sense, knowledge learned from ResNet50 is transferred to vision Transformers

in Table 2.
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3.4.5.1 Cosine Classifier vs Linear Classifier

In the general classification framework, images are passed into backbones like ResNet50, followed

by a linear classifier and softmax function to obtain classification results. As shown in Figure 3

in Section 3.2, to get the pre-trained model for channel-wise heatmaps, frequency representations

after block DCT are fed into backbones like ResNet50, and the following is a cosine classifier

instead of a linear classifier as often used in few-shot learning algorithms [1]. To examine the

difference, the same channel-wise heatmap generating process is conducted based on ResNet50.

Resulted heatmaps are as Figure 3.10. As we can see, both heatmaps show similar preferences on

frequency channels and most of them lie in the top left corners. As the heatmap from the cosine

head is more similar to the one in [27] by sampling, we choose the cosine head to obtain heatmaps

everywhere else in this chapter.

3.4.5.2 Heatmaps on Different Blocks

This section checks the heatmaps corresponding to different blocks in ResNet50 on the Tiny-

ImageNet dataset. The best model after 100 epochs is used. From Figure 3.11, the first 4 layers

focus only on the low-frequency channels for the Y, Cb, and Cr components. After that, higher

frequency channels are emphasized lightly like blocks 6, 7, and 12, and heavily like blocks 5 and

8. We simply use the heatmap from block 4 for qualitative tables in previous sections.

3.4.5.3 Heatmaps Across Epochs

This section examines the growth of heatmaps across epochs, including epochs 0, 30, 60, 90 and

98 (when we get the best model within 100 epochs). From Figure 3.12, the network focuses on

sparse frequency channels at the beginning, and then it explores more high-frequency channels

at epoch 30. Starting from epoch 60, frequency channels are determined focusing on finetuning.

It becomes closer and closer to the heatmap from the best model, which is used to calculate the

heatmaps throughout this chapter.
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3.4.5.4 The Effect of Datasets

This section shows the heatmaps of block 3 on different datasets, Tiny-ImageNet, CIFAR-10, and

Flowers-102. From Figure 3.13, Tiny-ImageNet and CIFAR-10 focus more on similar frequency

channels, while Flowers-102 on a different one. This is because Tiny-ImageNet and CIFAR-10

contain similar categories since CIFAR-10 is a subset of Tiny-ImageNet while images in Flowers-

102 are more fine-grained, including only 102 classes of flowers. Moreover, from Table 2, the

accuracy on the Flowers-102 dataset is relatively small compared with other datasets, indicating

the selected channels are far from reliable convergence.

3.5 Conclusion

This chapter proposes to explicitly increase input information density to fill the gap between

languages and images so as to increase the performance of vision Transformers on small-scale

datasets. To achieve this, we have designed a simple yet effective pipeline to calculate the channel-

wise heatmaps and select essential frequency channels in the DCT frequency domain. Surpris-

ingly, our parameter-free heatmaps are highly consistent with sampling-based heatmaps from pre-

vious work and are more efficient and explainable. It is also simple to implement by using the

well-developed JPEG compression API. Classification results on small-scale datasets including

CIFAR-10/100, Tiny ImageNet, SVHN, and Flowers-102 show the effectiveness of our approach.

Moreover, the selection strategy can be directly implemented in other tasks to reduce the commu-

nication cost between GPU and CPU while improving overall performance.
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Figure 3.9: Visualization of the effect of removing frequency channels on RGB domain. From left to right
column: (1) original image; (2) IDCT24: reconstructed image after removing frequency channels as in
[27] and keeping only 24 channels; (3) image-IDCT24: removed information in RGB domain; (4) IDCT18:
reconstructed image with our channel selection strategy; (5) image-IDCT18: our removed information in
RGB domain. Images from the first 2 rows are from Flowers-102 dataset and the rest rows are from the
Tiny-ImageNet dataset.
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Figure 3.10: Channel-wise heatmaps with different classifier head. Upper: cosine classifier. Lower: linear
classifier.
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Figure 3.11: Heatmaps corresponding to different blocks in ResNet50. From top to bottom are from first
four blocks, block 1 to block 4.
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Figure 3.12: Heatmaps corresponding to different epochs in ResNet50. From top to bottom, epoch 0, 30,
60, 90 and best (epoch 98).
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Figure 3.13: Heatmaps correspond to block 3 on different datasets with backbone ResNet50. From top to
bottom, Tiny-ImageNet, CIFAR-10 and Flowers-102 respectively.
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Chapter 4

Model Efficiency: Accumulated Trivial Attention Matters in

Vision Transformers

In addition to data efficiency, model efficiency is another key track in efficient deep learning.

Specifically, for computer vision tasks, they are CNN and Vision Transformers. In this chapter, we

take a closer look at the vision transformer models and find an inherent weakness in the structure

that may affect its model efficiency and hence the performance [21].

4.1 Introduction

Convolutional Neural Networks (CNN) have dominated computer vision tasks for the past decade,

especially with the emergence of ResNet [62]. Convolution operation, the core technology in

CNN, takes all the pixels from its receptive field as input and outputs one value. When the layers

go deep, the stacked locality becomes non-local as the receptive field of each layer is built on

the convolution results of the previous layer. The advantage of convolution is its power to extract

local features, making it converge fast and a good fit, especially for data-efficient tasks. Different

from CNN, Vision Transformer (ViT) [40] and its variants [32, 39, 48, 108, 120, 145] consider

the similarities between each image patch embedding and all other patch embeddings. This global

attention boosts its potential for feature extraction, however, it requires a large amount of data to

feed the model and limits its application to small datasets.

On the one hand, CNNs have demonstrated superior performance to ViT regarding the accu-

racy, computation and convergence speed on data-efficient tasks, like ResNet-50 for image classifi-

cation [12, 23, 106, 95], object detection [205] and ResNet-12 for few-shot learning [27]. However,
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Figure 4.1: Our proposed SATA strategy. (a) The multi-head self-attention module in Vision Transformers.
Each row in A represents attention weights corresponding to all sequences in v. (b) A closer look at how
to get the first sequence SA[0] after applying attention. We set the threshold to 0.05. The blue part denotes
larger attention weights and the purple is for trivial ones. We get up to 62 trivial attention weights and sum
up to 0.69 in the entire attention in SA[0] compared with 0.31 from similar sequences. (c) The distribution
of attention weights. (d) Accumulated attention within each bin. (e) The result of suppressing trivial weights
by our approach. Even if single attention trivial weight contributes little, the accumulated trivial attention
is still dominating, which is harmful when the attention contains much noise as in shallow layers of some
backbones.

to improve the performance is to find more inductive biases to include, which is tedious. The local

attention also sets a lower performance ceiling by eliminating much necessary non-local attention,

which is in contrast to Vision Transformers. On the other hand, the stronger feature extraction

ability of Vision Transformers can perfectly make up for the lack of data on small datasets. As a

result, Vision Transformers show promising direction for those tasks.

To adapt Vision Transformers to data-efficient tasks, some researchers focus on transfer learn-

ing [86, 158, 176], semi-supervised learning and unsupervised learning to leverage large datasets.

Others dedicate to self-supervised learning or other modalities to dig the inherent structure infor-

mation of images themselves [25]. For supervised learning, one path is to integrate convolution

operations in Vision Transformers to increase their locality. Another approach is to increase effi-

ciency by revising the structure of Vision Transformers themselves [131]. The proposed method

45



belongs to the second category.

The main transformer blocks include a multi-head self-attention (MHSA) module and a multi-

layer perceptron (MLP) layer, along with some layer normalization, where the MHSA module is

key to enriching each sequence by including long-range dependencies with all other sequences,

i.e. attention. Intuitively, this attention module is expected to have larger coefficients for those

sequences with higher similarity while smaller values for those less similar as the example A[0] in

Figure 4.1(a). In this way, all sequences can be enhanced by other similar sequences. However,

this only considers single similarities themselves, but not their accumulation. Taking a closer

look at the dot product operation on how each weighted sequence is obtained in Figure 4.1(a),

we can find it is from weighting each sequence with attention coefficients and then summing up

into one sequence as shown in Figure 4.1(b). This is problematic when the sequence length is

large and those less similar sequences are noise. When the similarities are added from all less

similar sequences, the accumulated sum can be even greater than the largest similarity as in Figure

4.1(d) caused by the small-value but large-amount trivial attention coefficients. This means the

accumulated trivial attention dominates the attention, which brings much noise to the convergence

of the Transformer. As a result, the trivial attention would hinder the training of the Transformer

on small datasets. To solve this rooted problem in Vision Transformers and make it better deploy

on small datasets, we proposed to suppress all trivial attention and hence the accumulated trivial

attention to make sequences with higher similarity dominant again.

The contributions of this chapter are summarized below.

1. We found the accumulated trivial attention inherently dominates the MHSA module in vision

Transformers and brings many noises on shallow layers. To cure this problem, we propose

Suppress Accumulated Trivial Attention (SATA) to separate out trivial attention first and

then decrease the selected attention.

2. We propose a trivial weights suppression transformation (TWIST) to control accumulated

trivial attention. The proposed transformation is proved to suppress the trivial weights to a

portion of maximum attention.
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3. Extensive experiments on CIFAR-100 and Tiny-ImageNet demonstrated up to 2.3% gain in

accuracy by using the proposed method.

4.2 Related Work

Vision Transformer has become a powerful counterpart of CNN in computer vision tasks since

its introduction in 2020 [40], benefiting from its power to capture long-term dependencies. This

ability is brought by their inherent structures in ViT, including the MHSA attention module which

enhances each sequence with all other sequences, and MLP layers to model the relationships across

all sequences. Including global attention also has weaknesses, like requiring large datasets to

train, unlike the local attention in CNN. However, such large datasets are not easily accessible in

many cases considering both time and effort cost in labeling and maintaining, e.g. rare diseases

in the medical field. One direct solution is to search for more data, either borrowing data or

knowledge from available large datasets and applying it to small datasets like transfer learning [86]

and distillation [158, 176] or digging other information like self-supervised learning [99, 11, 61]

and other modalities to exploit available labels [137, 145]. Another folder is to adjust the structure

of transformers. For instance, integrate convolutional layers to transformers to mitigate its reliance

on the amount of data like CvT [175], LeViT [51], CMT [55] and CeiT [192], design efficient

attention modules to replace the quadratic computation complexity MHSA as Reformer [85], Swin

[108], Swin-v2 [107], Twins [32], HaloNet [163] and Cswin [39], or remove MLP layers [38].

Regarding the MHSA module in vision Transformers, previous works can be divided into two

paths according to the components in the attention function, input and the function itself. For

the input of MHSA module, i.e. qkT, Swin [108] and Swin-v2 [107] calculate attention within

windows instead of full sequences, CvT [175] uses convolutional layers to replace the linear layers

to get kqv. And there are also some works argue that the Softmax function in original vision

transformers can be revised (e.g. adding learnable temperature [95]) or even replaced with other

functions (e.g. l1 norm in SimA [86] and Gaussian kernel in SOFT [114]). In this work, we post-

process the results after the Softmax function, which can be categorized into the attention function
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folder.

The attention module is designed to focus on more alike sequences and less on different ones.

This is based on the premise that all sequences are clear and include little noise. In this way, atten-

tion can enhance each sequence with alike sequences and useful signals get emphasized. However,

this does not hold true when the features contain much noise. As shown in Figure 4.1, the ex-

ample attention for one sequence A[0] looks reasonable, with less similar attention weights but

many trivial weights. However, when we check the sum of all trivial weights, it is far greater than

the maximum attention. Just imagine all these sequences assigned trivial attention are harmful

sequences, the accumulated attention from trivial weights is dominating the whole attention and

even covers it. This happens when attention contains too much noise, like some shallow layers as

mentioned in [172]. For shallow layer features, the image is a natural signal and has low infor-

mation density. In other words, the image itself contains much noise, like the background of an

object. This noise can even extend to several shallow layers due to the limitation of current feature

extraction models, making shallow layers contain much more noise than deeper ones. However,

determining the boundary for “shallow" is difficult since it is dependent on the depth of the model,

feature extraction of the model, and the noisy degree of datasets. Thus, we designed a learnable

suppressing scale s for all layers, avoiding finding this boundary by adding little computation.

4.3 Method

This section first introduces the MHSA module in Vision Transformers and its limitations, followed

by the proposed suppressing steps, setting a threshold to separate out trivial attention coefficients

and then decreasing their sum as shown in Figure 4.2.

4.3.1 Revisit MHSA

MHSA modules [40] in vision Transformers is the key to enriching sequence embedding in cap-

turing long-range dependencies. To get this, input z ∈ RN×D, where N is the length of sequence
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Figure 4.2: Our proposed suppressing method SATA. Step 1: divide trivial and non-trivial weights (0.05 in
this example). Step 2: apply TWIST transformation on trivial weights.

and D is the dimension of sequence, is first passed through linear layers to get q, k and v. Then

calculate the attention A to weight each sequence.

[q,k,v] = zUqkv (4.1)

A = so f tmax(qkT/
√

Dh) (4.2)

Finally, compute a weighted sum across all sequences to get the final enhanced sequences, SA(z)

in Figure 4.1(a).

SA(z) = Av (4.3)

Taking a closer look at the detailed operations in Equation (4.3) as in Figure 4.1(b), to get the

first row SA[0], V is first weighted by all elements of the first row of A, and the weighted sequences

are summed up to one sequence. One example of the attention weights A[0] on the CIFAR-100

dataset can be found in Figure 4.1(a), where several weighs are larger, indicating the corresponding

sequence is more similar to the current query sequence and hence with higher attention, while most
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of them are small indicating less similarity and importance.

We further explore the statistics of A[0], the distribution of attention as in Figure 4.1 (c), where

each bar denotes the number of attention weights in each similarity range. As in the example,

up to 62 attention weights are below 0.05 indicating less similar sequences, while only 3 weights

are greater than it. Surprisingly, after calculating the sum of attention weights in each bar and

getting the graph in Figure 4.1 (d), the sum of trivial weights (below 0.05) is far larger than the

sum of important weights, i.e. SA[0] is composed of more information from trivial sequences than

non-trivial sequences. In other words, trivial attention is dominating the MHSA altogether. This

also means the MHSA modules bring more noise than information, making it converge slowly,

especially on small datasets. To handle this, we need to first set a threshold to separate trivial/non-

trivial attention weights and then suppress trivial ones.

4.3.2 Divide

The first step is to get all trivial attention weights before suppressing them. Here we use a sup-

pression threshold to divide the attention weights into trivial and non-trivial ones. Those attention

weights below the suppression threshold are regarded as trivial weights, otherwise as non-trivial

weights. However, there are also some choices to set the threshold.

Relative or absolute? A relative threshold is a portion t of a value, e.g. the maximum attention

weight xm in a row. i.e.

threshold = t ∗ xm (4.4)

Compared to this, an absolute threshold is a given value t. i.e.

threshold = t (4.5)

Notice that the absolute attention weights depend on the length of the sequence, the function to

get it (e.g. temperature in Softmax function), datasets and so on. We set it a relative threshold as in

Equation (4.4), where t is the relative scale. This dividing process can be achieved by multiplying
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the original attention with a mask M with ‘1’ for trivial positions and ‘0’ for nontrivial ones as

below:

M =

1, attention ≤ t ∗ xm

0, elsewhere
(4.6)

Then the final attention after normalization can be obtained by multiplying the original atten-

tion with the mask M as below.

A′ = M⊙A (4.7)

where ⊙ denotes element-wise product.

4.3.3 Suppress

To suppress the sum of trivial attention, we transform each trivial attention weight from x j to x′j

and call this transformation as TWIST.

Lemma 1. Given n positive attention weights x1 + x2...+ xk + xk+1 + ...+ xn−1 + xm = 1, where

x1, ...,xk are trivial weights, less than a threshold T , xm is the maximum weight and xk+1, ...,xn−1

are the rest of weights. If

x j
′ =

x2
j

∑
k
i=1 xi

, j = 1...k (4.8)

Then,
k

∑
i=1

xi
′ ≤ xm (4.9)

and

x′j ≤ x j, j = 1..k (4.10)

Proof. Since for all x j, 0 < x j ≤ xm ≤ 1 where j = 1...k, we have x2
j ≤ x j ∗ xm. Then

k

∑
j=1

x2
j ≤ (x1 + x2 + ...+ x j)∗ xm (4.11)
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Dividing both sides by the sum yields

k

∑
j=1

x2
j/(x1 + x2 + ...+ x j)≤ xm (4.12)

or
∑

k
j=1 x2

j

∑
k
i=1 xi

≤ xm (4.13)

Rewrite the numerator,
x2

1 + x2
2 + ...+ x2

k

∑
k
i=1 xi

≤ xm (4.14)

which is exactly Equation (4.9) after substituting Equation (4.8).

To prove Equation (4.10), we only need to prove:

x2
j

∑
k
i=1 xi

≤ x j, j = 1...k (4.15)

Dividing both sides by positive value x j yields

x j

∑
k
i=1 xi

≤ 1, j = 1...k (4.16)

As x j is one of the items in the denominator, Equation (4.16) holds true.

Lemma 1 means if we want to make the sum of trivial weights less than the maximum weight,

we can simply transform x j to x j
′ based on Equation (4.8), and attention weights after transforma-

tion are always no more than original weights. We can also add a scale s on both side of Equation

(4.14) to make the sum smaller than a portion s (s ≥0) of the maximum. As a result, our final

transformation on x1, ...xk to suppress the accumulated trivial attention weights is

x j
′ = s∗

x2
j

∑
k
i=1 xi

, j = 1...k (4.17)

where the suppressing scale s is learnable. We name this transformation in Equation 4.17 as trivial
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lr1 (model) lr2 (CIFAR-100) lr2 (T-ImageNet)

ViT 0.003 7e−5 0.001
PiT 0.001 0.001 3e−4

Table 4.1: Learning rates for model (lr1) and suppressing scale s (lr2) on CIFAR-100 and Tiny-ImageNet.

weights transformation (TWIST). This transformation can guarantee

k

∑
i=1

x′i ≤ s∗ xm (4.18)

4.4 Experiments

This section presents experiment settings, results and discussions after implementing the suppress-

ing of Vision Transformers.

4.4.1 Settings

We perform image classification on small datasets, including CIFAR-100 [87] and Tiny-ImageNet

[93]. CIFAR-100 includes 60,000 images with size 32× 32, 50,000 for train split and 10,000 for

validation split. Tiny-ImageNet has 100,000 and 10,000 64× 64 images for train and validation

split respectively. Following settings in [95], we perform data augmentations including CutMix

[194], Mixup [203], Auto Augment [35], Repeated Augment [36], regularization including random

erasing [209], label smoothing [157] and stochastic depth [75]. Optimizer is also AdamW [112].

The batch size is 128 and all models are trained for 100 epochs on one A100 GPU. The learning

rate of model is set to 0.003 for ViT [40] and 0.001 for PiT [65]. The suppressing scale s is

initialized to 0.5 and its learning rate can be found in Table 4.1 lr2. The threshold coefficient t is

fixed to 0.05 for PiT on CIFAR-100 and 0.1 for all other experiments.
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Model Param (M) CIFAR-100 T-ImageNet

ResNet56∗ 0.9 76.36 58.77
ResNet110∗ 1.7 79.86 62.96
EfficientNet B0∗ 3.7 76.04 66.79
ViT 2.8 73.70 56.45
SATA-ViT (ours) 2.8 74.93(+1.23) 58.77(+2.32)
PiT 7.1 72.31 57.87
SATA-PiT (ours) 7.1 73.52(+1.21) 58.15(+0.28)

Table 4.2: Classification results on CIFAR-100 and Tiny-ImageNet dataset. Top 1 accuracy (%) is reported.

4.4.2 Integrating with Vision Transformers

To evaluate the effect of our proposed suppressing method, we integrate it with both the original

ViT [40] and PiT [65] following the scale for small datasets in [95], where the patch size is set

to 4 for CIFAR-100 and 8 for Tiny-ImageNet, resulting in the same number of tokens 64 and 1

class token. From the results in Table 4.2 we see that the accuracy for ViT is increased by 1.23%

on CIFAR-100 and up to 2.32% on Tiny-ImageNet by integrating our trivial attention suppressing

module. It also boosts PiT on both datasets with up to 1.21% on CIFAR-100. These improvements

demonstrate that taking care of trivial attention weights explicitly is necessary and suppressing

them can improve performance. Besides this, examining the effect of our method on a different

scale of tokens may be interesting future work.

4.4.3 Ablation Study

To verify how each module works, we decompose each component in the proposed suppressing

module using ViT on Tiny-ImageNet. Specifically, to understand the necessity of suppressing,

we let s be a hyperparameter as t and perform a grid search on both hyperparameters. The best

accuracy and its search result are listed in Table 4.3. Comparing row 2 with row 0 in Table 4.3, we

observe that suppressing brings 1.24% more accuracy to ViT after grid search. In addition, we also

set suppressing scale s to 0 and find that accuracies for most threshold t are near 56.45% when no

suppressing exists as shown in Table 4.4. This indicates that those trivial attention weights are still

54



index suppress threshold Top 1
0 - - 56.45
1 0 0.075 57.47
2 0.75 0.1 57.69
3 learnable 0.1 58.77

Table 4.3: Ablation study. In this table, we compare suppressing with grid search s, suppressing to 0,
suppressing with learnable s and no suppressing.

t
s

1 0.75 0.5 0.25 0.1 0

0.1 56.43 57.69 56.22 57.30 56.46 56.51
0.075 56.79 57.06 56.74 56.29 56.99 57.47
0.05 56.11 56.72 56.47 56.87 57.24 56.47
0.025 56.06 56.85 56.71 56.65 56.95 56.31
0.01 57.23 56.31 56.63 56.45 56.44 56.55
0 56.45

Table 4.4: Grid search on s and t for ViT on Tiny-ImageNet dataset. The baseline without suppressing is the
last row when t = 0 and the last column denotes removing the attention directly.

helpful.

Grid Search. For grid search, we select s from [1,0.75,0.5,0.25,0.1,0] and t from [0.1,0.05,0.025,0.01,0].

The learning rate is 0.003, the same as ViT on CIFAR-100 and Tiny-ImageNet when no suppress-

ing exists. In Table 4.4, we can find the best result is from s = 0.75 and t = 0.1 on Tiny-ImageNet,

while it is s = 0 and t = 0.075 for ViT on CIFAR-100 according to 4.5, which means we get a

better performance when removing those attention directly. We also select the initialization values

for learnable s from their average performance. From both Table 4.4 and Table 4.5, we can see

that the accuracies are increased in most cases with suppressing compared with the baseline when

no suppressing happens, i.e. when the last row t = 0 in both tables. The last column in Table 4.4

shows that deleting the attention will hurt the performance most of the time on Tiny-ImageNet

while it helps all the time on CIFAR-100. We also observe that the relationship between s and

t is complicated, neither linear nor inverse. This is reasonable since both parameters are highly

correlated.

Learnable s. Learned s of ViT on both CIFAR-100 and Tiny-ImageNet can be found in Figure
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t
s

1 0.75 0.5 0.25 0.1 0

0.1 74.61 74.51 74.46 74.07 74.42 74.50
0.075 74.81 74.01 73.89 74.65 73.97 74.75
0.05 74.71 74.18 74.82 74.46 74.32 74.96
0.025 74.34 73.39 73.93 74.34 74.21 73.86
0.01 74.15 74.75 74.60 74.15 74.49 73.71
0 73.70

Table 4.5: Grid search on s and t for ViT on CIFAR-100 dataset. The baseline without suppressing is the
last row when t = 0 and the last column denotes removing the attention directly.

4.3. Note that s denotes the suppressing scale to the maximum attention for each sequence. In

Table 4.3 we can see, for the first 2 layers on Tiny-ImageNet and the first 4 layers on CIFAR-100

dataset, the sum of trivial weights is ensured to be below the maximum. While for deep layers,

the sum of trivial attention can be scaled up to several times the maximum. This is reasonable

since for deeper layers, features contain less noise, and hence suppressing trivial attention weights

is no longer necessary. Instead, another function of our SATA works is to adjust the distribution

of attention by increasing trivial attention weights to be more comparable with the maximum and

hence influence the distribution.

4.4.4 Comparison with different normalization

Softmax with temperature. The original Softmax can be denoted by

A = so f tmax(τqkT) (4.19)

where τ is the temperature to control the scale of the Softmax function. In the original ViT [40],

the normalization of attention modules is

A = so f tmax(
qkT
√

Dh
) (4.20)
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Figure 4.3: Learnable s vs. fixed s from grid search for ViT.

where they use 1/
√

Dh, the dimension of the head, as the temperature τ of the Softmax function to

adjust the distribution of attention weights. The higher the temperature τ , the sharper the Softmax

function as shown in Figure 4.4. Figure 4.4 shows that small values become even smaller and

large ones are even larger when increasing the temperature of Softmax function from τ = 1 to

τ = 2. This can also enlarge the ratio of larger values to smaller values, which is similar to the

effect of our proposed suppressing trivial weights. However, increasing the temperature of Softmax

cannot solve this. More specifically, it also brings side effects along with the suppression of trivial

attention weights.

To check this, we first conduct experiments by setting different temperatures. The results can be

found in Table 4.6. Table 4.6 shows that, compared with the Softmax with default temperature τ =

1/
√

Dh in original ViT, increasing the temperature to 2×, 3× and 4× all improves the performance

on Tiny-ImageNet dataset. And the best result is from τ = 4/
√

Dh Tiny-ImageNet.

In summary, Softmax with higher temperature can mitigate the dominating accumulated trivial
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Figure 4.4: Softmax function with temperature. With the increase of temperature, the difference between
large values and smaller values gets enlarged by decreasing smaller values and increasing greater ones.

attention effect partly at the cost of changing the distribution of sensitive larger attention weights.

While our proposed suppressing method decouples trivial and non-trivial attention weights to solve

the dominating effect, making us available to take advantage of both adjusting trivial attention

weights according to noise level and adjusting the distribution of non-trivial attention weights with

higher temperature freely. The results to build our SATA on softmax with temperature are shown

in Table 4.6. According to Table 4.6, the performance for Softmax with temperature is improved

with the increase of τ , while it decreases after applying our proposed module. In most cases e.g.

τ = 1×,2×,3× of default temperature, SATA module further boosts the accuracy. This indicates

that the performance increase of Softmax with temperature is from the enlargement of the gap

between larger and smaller values, which is good for shallow layers while harming deeper layers.

Our module can adjust trivial attention weights in both situations, noisy or noiseless, and especially

when both happen in the same model while requiring different handling.
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model τ ′ = 1 τ ′ = 2 τ ′ = 3 τ ′ = 4
ViT + τ 56.45 57.20 57.21 57.81
ViT + τ + SATA 58.77 58.12 57.72 57.58

Table 4.6: Combining Softmax with different τ = τ ′× 1√
Dh

on Tiny-ImageNet. We adjust the learning rate
for s after adding τ . The best results are reported.

model CIFAR-100 Tiny-ImageNet
ViT 73.70 56.45
ViT + LSA 75.40 57.82
ViT + LSA + SATA 75.47 58.28

Table 4.7: Integrating with LSA module.

Diagonal suppressing. This module LSA is proposed in [95] considering that the attention

in diagonal is from self-attention in the MHSA module for Vision Transformers, which is not

necessary since the skip connection in the MHSA module will add the attention itself with a larger

ratio compared with the self-attention in the attention branch. However, this self-attention usually

is larger than other attention, leaving less room for other attention to get large values. To this end,

they propose to manually set the diagonal to an extremely small value, making the attention after

Softmax small. As the goals of this module and our SATA module are different, we can combine

both methods together to yield better attention. The results are shown in Table 4.7. According to

this table, the performance is increased on both CIFAR-100 and Tiny-ImageNet after implementing

the LSA module and our module further adds up to 0.46% on Tiny-ImageNet.

4.5 Conclusion

In this chapter, we have examined the MHSA modules in Vision Transformers and discovered that

attention from the trivial sequence is dominating the final attention after accumulation, affecting

its performance by including more noise than information on shallow layers. This issue is not

handled by the attention function e.g. Softmax. To solve this challenge, we propose to handle

trivial weights explicitly by first separating out trivial attention weights with a relative threshold
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to the maximum attention and then adjusting them to a portion of the maximum attention weight.

Experiments show up to 2.3% increase in accuracy, indicating this process is necessary to make

the attention function work.
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Chapter 5

Training Efficiency: SuperLoRA–Parameter-Efficient Unified

Adaptation of Multi-Layer Attention Modules

Training efficiency aims to use fewer training iterations and/or memory usage to achieve com-

parable or even better performance, which saves resource consumption at training time for each

downstream task. A commonly used method is to leverage pretrained large models like ViT and

diffusion models, and then fine-tune on downstream tasks with only fewer parameters. In this way,

both training time and memory required for downstream tasks are reduced greatly. This chapter

introduces a unified adaptor, SuperLoRA, which reduced required trainable parameters to by 3 to

10 fold [22].

5.1 Introduction

Large neural network models are dominating machine learning recently with the emergence of

exceptional models, such as Vision Transformer (ViT) [40], ConvNeXt [110] and Stable Diffu-

sion [67] for vision tasks, and large language models (LLMs) including GPT [1], PALM2 [5],

Gemini [4] and LLaMA2 [159] for natural language processing (NLP). However, the increased

resource consumption and data requirement along with model size limits its generalization on

downstream tasks. To solve this, Parameter-Efficient Fine-Tuning (PEFT) has been widely ex-

plored to fine-tune less parameters while retaining high performance. Among this, adapter-based

technique like LoRA (Low-Rank Adaptation) [72] demonstrates superiority in its convenience of

plug-and-play nature.

LoRA [72] approximates the weight updates of the base model by approximating the change
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∆W of each weight matrix as the product of two low-rank matrices. This decreases the required pa-

rameters from d2 to 2rd when r ≪ d, where d and r are weight size and the rank, respectively. Most

LoRA variants work on solving the inherent low-rank constraint of matrix factorization, including

LoHA (Low-rank Hadamard) [190], LoKr (Low-rank Kronecker) [190], and LoTR (Low Tensor

Rank) [7]. However, we find these variants can be unified within our framework—SuperLoRA—

with different hyper-parameters as shown in 5.1. Our proposed SuperLoRA framework is depicted

in 5.1, which also yields to some new variants: LoNKr (N-split version of LoKr) and LoRTA

(Tensor version LoRA). Additionally, we introduce two extended options, 1) reshaping ∆W to any

arbitrary multi-dimensional tensor arrays before applying LoRA variants, and 2) splitting all ∆W

into an arbitrary number of groups, which breaks the boundaries for ∆W across different weights.

Moreover, to further compress the number of trainable parameters, a projection layer F with fixed

parameters is inserted to map ∆Wlora to the actual ∆W . Accordingly, SuperLoRA provides more

flexibility and extended functionality, controlled by a set of hyper-parameters as shown in 5.2. The

contributions of this chapter are summarized as follows:

• We propose a new PEFT framework SuperLoRA which gracefully unifies and extends most

LoRA variants.

• With projected tensor rank decomposition, SuperLoRA can adapt all weights across layers

jointly with a wide range of adjustable parameter amount.

• We investigate the effect of tensor reshaping, grouping, random projection, and shuffling.

• We demonstrate high parameter efficiency for large ViT and diffusion models in two transfer

learning tasks: image classification and image generation.

• Significantly reduce parameters by 3 to 10 folds.
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Figure 5.1: Schematic of SuperLoRA to fine-tune multi-layer attention modules at once with vectorizing,
grouping, projection, folding, and factorization.

hyper-parameters settings method
F = I, weight-wise, K = 1, Cg1 = I, M = 1, Ag11 ∈ Rdindout×1 dense FT
F = I, weight-wise, K = 1, Cg1 = I, M = 2, Ag1m ∈ Rdm×r LoRA [72]
F = I, weight-wise, K = 2, Cgk = I, M = 2, Agkm ∈ Rdm×r LoKr [190]
F = I, group-wise, G = 1, M > 2 LoTR [7]
F = I, group-wise, K > 2, Cgk = I, M = 2, Agkm ∈ Rdm×r LoNKr
F = I, group-wise, K = 1, M > 2, Agkm ∈ Rdm×r LoRTA

Table 5.1: Hyper-parameter settings in SuperLoRA and the resultant LoRA variant

5.2 Related Work

PEFT algorithms are widely explored in transfer learning tasks in both computer vision [79, 64, 78]

and NLP fields [102, 96, 53, 60, 81] as it not only saves memory and time at fine-tuning, but also

requires much less data to fine-tune, making it feasible to borrow the capacity from large models in

few-data tasks. Adapter-based methods [17, 58, 70, 135], that freeze the base model weights and

fine-tune only the additional adapter parameters, stand out since their plug-and-play nature enables

many downstream tasks to share the same large model, leaving the adapter to hold only the task-

specific information. The widely used method LoRA [72] and its extension [59, 211] assume that

the weight correction term can be estimated by low-rank decomposition under the low-dimensional

manifold hypothesis.

Addressing the inherent low-rank constraint of matrix factorization in LoRA, LoHA [190]
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notation description
r rank of factorization
F mapping function
ρ compression ratio
G number of groups
M order of tensor modes
K number of splits

Table 5.2: Hyperparameters and no-
tation.
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Figure 5.2: Required number of parameters.

divides ∆W into two splits and combines them with Hadamard product, and KronA [43] combines

the two splits with a Kronecker product to enlarge the overall rank. LoKr [190] further extended

KronA to convolutional layers. LoDA (Low-Dimensional Adaptation) [104] extended LoRA by

introducing nonlinearity. Our SuperLoRA can nicely generalize and extend such variants.

Instead of approximating weight-wise updates, LoTR [7] jointly approximates all ∆W across

the model with a careful handling to preserve the geometric meaning of each weight. Differently,

SuperLoRA relaxes the geometrically meaningful boundaries by caring the total number of pa-

rameters and splitting it to any number of groups. For high-order tensor decomposition, LoTR

employs more stringent Tensor Train Decomposition to deal with the core tensor explosion, while

SuperLoRA coupled Tucker Decomposition with a fixed projection layer. Besides, their proposed

methods are restricted to context when ∆W is the same high-order tensor, while with reshaping,

SuperLoRA (LoRTA) can be applied to any weight shape.

Most recent work [18] decomposes each convolution kernel into a learnable filter atom and

its non-learnable counterparts. The concept of filter atom is similar to the projection layer of

SuperLoRA. However, it works on each convolutional kernels separately, resulting in a waste of

parameters, while SuperLoRA considers the entire model jointly. Besides, the atom coefficients

are obtained from matrix factorization, while SuperLoRA uses a fastfood projection [92], which is

faster, simpler and more theoretically justifiable to exploit intrinsic dimensionality [2]. In addition,

SuperLoRA can control the size of atoms directly while atoms in their method are restricted in
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factorization.

Local LoRA [82] aims to reduce memory consumption at fine-tuning by splitting large model

into groups and then fine-tune group-by-group sequentially, but no adjustment on the LoRA struc-

ture was proposed. Instead, SuperLoRA focuses on how to split and assign LoRA for each group,

which is a viable extension of Local LoRA.

5.3 Methodology

5.3.1 Low-Rank Adaptation (LoRA)

LoRA [72] assumes the update ∆W of each weight matrix W for fine-tuning can be approximated

by low-rank mapping as ∆W = AB⊤ ([·]⊤ denotes matrix transpose), which is added to the frozen

weight matrix as shown in 5.3a:

W ′ =W +∆W =W +AB⊤, (5.1)

where A ∈ Rdin×r, B ∈ Rdout×r, and the rank r. With a smaller r compared with the matrix dimen-

sions, it only requires (din +dout)r parameters for each weight matrix, while full fine-tuning (FT)

for dense ∆W ∈ Rdin×dout results in dindout parameters. LoRA has been widely used in fine-tuning

large models as much less trainable parameters save memory usage at training while retaining

performance, making it easily adapted to downstream tasks with limited resources.

5.3.2 SuperLoRA

5.1 shows the overview of SuperLoRA, which is a generalization of LoRA variants to allow high

flexibility in the weight update ∆W . SuperLoRA can be formulated as below:

∆Wgroupg = F (∆Wlorag) = F

(
K⊗

k=1

(
Cgk

M

∏
m=1

×mAgkm

))
, (5.2)
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where F (·) is a simple projection function applied on the results of SuperLoRA modules. We

denote ∏
M
m=1 ×m as tensor products from mode-1 to mode-M. Here, M represents the order of the

reshaped ∆Wlorag tensor modes, and high-order Tucker decomposition is employed to formulate

this high-order tensor. SuperLoRA units in 5.1 are combined with Kronecker product across K

splits in a proper shape. Depending on reshaping, each split has multiple choices including a

combination of dense FT (1D), LoRA (2D), and high-order Tucker decomposition [161], where

Cgk (core tensor) and all Agkm (plane factors) are combined with mode-m tensor product.

For SuperLoRA, we first concatenate all ∆W ∈ Rdi×di across multiple layers to get the total

correction of ∆Wall ∈R∑i d2
i . Then, ∆Wall is divided into g groups: {∆Wgroupg} for g ∈ {1,2, . . . ,G}.

Each LoRA module will then produce ∆Wgroupg . Finally, stretch ∆Wgroupg to one dimension, fetch

corresponding size of ∆W from those ∆Wgroupg and add it to candidate weight matrix, e.g., query

and value projection weights for attention modules across layers.

SuperLoRA and LoTR: While LoRA estimates ∆W in a weight-wise independent way, Su-

perLoRA considers the whole weights ∆Wall jointly. It can relax the restriction of the weight shape

and geometric meaning of weight axis unlike LoTR. Here, the number of groups can be adjusted

to balance between parameter amount and fine-tuning performance. When the number of groups

is the number of weights and the group boundary matches the weight boundary, it corresponds to

weight-wise LoRA. When the number of groups is G = 1, SuperLoRA corresponds to LoTR [7],

but with an additional projection mapping F .

Reshaping to regular tensor: Grouping multiple layers together by concatenating ∆W along

one axis results in skew ∆Wgroupg , limiting the choice of ranks in LoRA modules and leading to

worse approximation. For example, stacking query and value weight updates as [∆Wq,∆Wv] will be

of size din ×2dout, which is less efficient for LoRA as A and B matrices have unbalanced sizes. To

solve this, we propose to reshape ∆Wgroupg to a regular tensor: i.e., square-like 2D matrix, cubic-

like 3D tensor, or high-order hyper-cubic tensors having same dimension size across all axes. This

reshaping can reduce the dimension per axis in the order of O[N1/M] for N being the number of

stacking weights, that in return can allow higher rank size per plane factors. Several examples of
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Figure 5.3: Overview of (a) LoRA; (b) LoKr; (c) LoNKr (weight-wise version, ours).

grouping and reshaping are discussed in 5.6.3, and its geometric analysis in 5.6.4.

SuperLoRA and LoKr/LoNKr: LoKr is depicted in 5.3b, which can be extended as shown in

5.3c. We call it LoNKr, which combines K splits composed of sub LoRA units through Kronecker

products: i.e., K > 2 in 5.2. When K = 2, it reduces to LoKr but with an additional flexibility. For

example, LoNKr can still adapt multiple attention modules at once with an adjustable group size

G, unlike weight-wise adaptation of LoKr.

LoRTA: Folding a matrix ∆Wgroupg into high-order tensor (e.g., 3D, 4D, 5D) can decrease

parameters with tensor rank decomposition, like Tucker decomposition, where ∆Wgroupg is repre-

sented by M 2D plane factors and one MD core tensor. We refer to this variant of SuperLoRA

using Tucker decomposition as LoRTA. For example, when M = 4 and K = 1, we have 4D tensor

rank decomposition as follows:

∆Wgroupg =CgK ×1 AgK1 ×2 AgK2 ×3 AgK3 ×4 AgK4 ∈ Rd1×d2×d3×d4, (5.3)

where CgK ∈ Rr1×r2×r3×r4 is a reshaped core tensor, AgKm ∈ Rdm×r is a mode-m 2D plane factor,

and ×m denotes mode-m tensor product. For simplicity, we set a rank r = rm for any mode m ∈

{1,2, . . . ,M}.

The core tensor may cause the explosion of parameters with larger rank as the number of

parameters is exponential as rM. It may be resolved by restricting the core tensor to be strongly

diagonal or identity. For instance, M = 2 with identity core tensor CgK = I corresponds to the
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original LoRA, and M = r = 1 identity core tensor corresponds to the dense FT. When using

diagonal core tensor, it reduces to canonical polyadic (CP) decomposition. 5.2 shows the number of

required parameters with CP decomposition. One can see that higher-order tensor decomposition

can significantly reduce the total number of trainable parameters at a certain rank. We provide

another solution without limiting the core tensor by coupling with the projection layer F below.

Projection: Most LoRA variants assume the resultant ∆Wlorag from LoRA modules is the final

∆W added to W directly. However, we can further modify the ∆Wlorag through a simple mapping:

e.g., we can project much smaller ∆Wlorag into larger final ∆Wgroupg to improve the parameter effi-

ciency. The compression ratio is ρ = |∆Wlorag|/|∆Wgroupg|, where | · | denotes the total number of

elements of the tensor. We consider a random projection layer based on the fastfood projection [92]

to map ∆Wlorag to ∆Wgroupg .

Specifically, the fastfood projection is performed as follows:

∆Wgroupg = F (∆Wlorag) = vec[∆Wlorag]H
′ diag[G ]Π H diag[B], (5.4)

where vec[·] is a vectorization operator, diag[·] denotes a diagonalization operator, H is Walsh–

Hadamard matrix, H ′ is its truncated version, G is a random vector drawn from normal distri-

bution, Π is a random permutation matrix for shuffling, and B is a random vector drawn from

Rademacher distribution. It is a fast Johnson–Lindenstrauss transform with log-linear complexity

due to the fast Walsh–Hadamard transform, and no additional parameters are required when the

random seed is predetermined. Further, a nonlinear function such as tanhshrink can be added to

make this layer nonlinear. To avoid introducing extra parameters for the projection layer, weights

of this projection layer is reproduced on the fly with a known random seed and fixed during training

and inference.

Shuffling: Another simple projection is to use a shuffling function without compression. It

can be achieved by simplifying the fastfood projection without H , H ′, G , and B but with the

random permutation Π and projection ratio ρ = 1. As SuperLoRA updates all weights at once, we
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have a flexibility in a way to distribute ∆Wgroupg towards which element of W . To understand how

the weight assignment method impacts, we consider a random shuffling case for the projection

function F . Several projection variants including shuffling are discussed in 5.6.6.

5.4 Empirical Experiments

We evaluate SuperLoRA on two different transfer learning tasks: image classification and image

generation. Below, we describe the experiment settings and results for these tasks as well as

visualization of the generated images.

5.4.1 Classification transfer task

5.4.1.1 Settings:

Transfer learning for image classification is conducted between ImageNet21k [37] and CIFAR100 [87]

based on a ViT-base [40] model. Specifically, a ViT model1 pretrained on ImageNet21k is loaded

with a new classifier head2 for classifing CIFAR100 dataset. More details of the ViT model are

described in 5.6.1. The query and value projection layers in the attention modules are then fine-

tuned with SuperLoRA. All layers of the pretrained ViT model are frozen except the SuperLoRA

parameters and the new classifier head. The model is trained for 5,000 steps with the stochas-

tic gradient descent (SGD) optimizer, with a batch size of 128 and a learning rate of 0.05. The

OneCycleLR [153] scheduler is used.

We evaluated SuperLoRA with grouping with/without reshaping to square-like for 2D ∆Wgroupg ,

reshaping version for higher-order ∆Wgroupg including 3D, 4D and 5D. The fixed projection lay-

ers are inserted to SuperLoRA with reshaping (2D version) and also dense. Original weight-wise

LoRA is also examined for comparison by setting the number of groups to the number of query

and value weights (24 for 12-layer ViT-base) as all projection weights for ViT-base are equal

1https://huggingface.co/google/vit-base-patch16-224-in21k
2https://github.com/bwconrad/vit-finetune
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Figure 5.4: Classification on CIFAR100 dataset with SuperLoRA.

size. Each correction weight is of size 768×768 as the projection weight for query/value, result-

ing in 14M parameters. The number of groups are selected from G ∈ {1,4,8,12,24}, every two

ranks are evaluated from 1 to 32 for most methods and LoRA α is set to be the same as rank.

Except for most cases, more ranks are needed to span the parameter axis well, including larger

ranks from 34 to 128 and smaller ranks below 8 for LoRTA. Projection compression ratio is from

ρ ∈ {0.5,0.25,0.1,0.01}, and the fixed projection parameters are shared across all groups in our

experiments.

5.4.1.2 Results:

Classification results versus the number of parameters are shown in 5.4 with Pareto frontier lines.

Comparing group-wise SuperLoRA (2D with/without reshape) with weight-wise LoRA, we can

find that SuperLoRA versions show better performance in terms of the trade-off between clas-

sification accuracy and the number of parameters. Noticeably, we observe three to four times

advantage in terms of parameter efficiency for the same accuracy. As the largest number of groups
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is set to 24 (i.e. LoRA), it indicates smaller number of groups are superior. This may be because

ViT model is excessively large for the CIFAR100 dataset, with much more redundant weights.

Grouping weights and layers together can reduce noise brought by the redundancy. With reshap-

ing ∆Wgroupg to a square matrix, classification accuracy further increases in the lower parameter

regime and the range of parameters the model can cover becomes wider as higher rank can be used

while maintaining a smaller number of parameters.

To discuss the effect of higher-order tensor folding, the order M is set to be 3, 4 and 5 for

SuperLoRA (i.e. LoRTA) as well as 2. For M = 2 cases with 2D tensor, we use identity core

tensor like typical LoRA. With the increase of order from 2 to 5, higher order takes place lower-

order at fewer-parameter regimes. Moreover, data points for high-order LoRTA show a hill-like

trend with the increase of parameters. This may be caused by the inefficient core tensor, which

increases parameters rapidly without benefiting the accuracy. When comparing the lowest rank

LoRA (which achieves around 0.9 accuracy with about 4 × 104 parameters), our LoRTA (3D)

significantly improves the accuracy by about 1% at the comparable number of parameters, and

more significantly reduces the number of parameters by 10 folds to keep the comparable accuracy

of 0.9.

Finally, we address the impact of the random but fixed projection layer F . Fixed fastfoood

projection is applied on SuperLoRA (1D, dense) and SuperLoRA (2D, reshape). For 1D dense

with projection, the plot for a projection ratio of {1,0.5,0.25,0.1,0.01} is placed from right to

left in 5.4. The classification accuracy dropped less than 1% from projection ratio 1 to 0.1 (i.e.

90% less parameters), but it is worse than LoRA. For SuperLoRA (2D, reshape, w/projection), we

evaluated a projection ratio of {0.5,0.25,0.1}. To get some results of projection for the number

of parameters around 104 and 105, we select a few settings for SuperLoRA (2D, reshape) with

G = 1 as shown in the figure with a marker of dark stars. Most projection results demonstrate

better accuracy compared with other SuperLoRA settings without projection in the same number

of parameters level. This result shows a smaller adapter with fixed projection layer is a strong

functionality to improve the parameter efficiency of SuperLoRA.
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Another experiment of transfer learning from ImageNet1k to CIFAR10 classification shows

similar results, achieving 3 to 10-fold improved parameter efficiency, as discussed in 5.6.7.

5.4.2 Image generation transfer task

5.4.2.1 Settings:

For the image generation task, SuperLoRA is evaluated by transfer learning between SVHN [127]

and MNIST datasets [94]. Both datasets have 10 classes corresponding to images of the digits

0 to 9, where the SVHN images have a more complicated color background, while the MNIST

images are nearly black-and-white with a plane black background. We mainly work on the transfer

learning from SVHN to MNIST. The reverse transfer learning from MNIST to SVHN is discussed

in 5.6.9.

The model we worked on is a classifier-free diffusion model [68] and the correction weights

from LoRA variants are added to query and value projection matrices in the attention modules

of U-Net backbone [141]. Note that the size of projection weights differs across layers for this

U-Net structure, which allows us to examine the performance of SuperLoRA after breaking the

boundaries of different weight matrices. More details of the diffusion model are described in 5.6.2.

For comparison, the original weight-wise LoRA and dense FT are also evaluated. For SuperLoRA

variant, LoRA, LoNKr and LoRTA consider three versions: weight-wise, group-wise and group-

reshaped. The scaling factor α of LoRA is fixed to 2.0 for all variants unless specified. 40 epochs

with a batch size of 32 are carried out and results plotted are mainly from epoch 20 noticing

convergence becomes stable around epoch 20. The maximum rank is set to 32 by default and a

constraint r < min(din,dout) is imposed. To evaluate the quality of images generated by the fine-

tuned diffusion model, we consider several metrics including Inception Score (IS) [147], Fréchet

Inception Distance (FID) [66], Multi-Scale Intrinsic Distance (MSID) [160], Kernel Inception

Distance (KID) [10], Recall and Precision [89]. Except for the recall and precision metrics, all

metrics should be lower for higher-quality image generations. As we found ℓ1-distance based IS is

more consistent to the perceptual visual quality, we mainly focus on IS metric results in the main
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Figure 5.5: Comparison between weight-wise LoRA and group-wise SuperLoRA: (a) sweeping rank and
group; (b) with/without reshaping to square-like.

content, while the results for other metrics can be found in 5.6.8. For following figures, Pareto

frontier lines/dots are mainly shown to provide the limit of each method, while Appendix provides

more complete figures with all data points.

5.4.2.2 Grouping effect:

First, we evaluated how splitting all ∆Wall into multiple groups affects the performance. 5.5a shows

the results of dense, original weight-wise LoRA and group-wise SuperLoRA with different number

of groups. Sweeping the rank and the number of groups, we plot the image quality metrics in y-

axis and the required number of trainable parameters in x-axis. Pareto frontier lines/data points are

also shown in the figure.

5.5a shows that the dense FT for ∆W presents the best IS, while requiring most parameters.

Original weight-wise LoRA is closest to dense, in terms of both IS and parameter amount. How-

ever, in low-parameter regimes, SuperLoRA (2D, group1) shows the best results compared with

other grouping. While in the middle of parameter amount axis, other splittings including groups

G = 8 and 12 show slightly better IS compared with LoRA. Besides, splitting ∆Wall shows much

more data points compared with both LoRA and dense, providing us higher flexibility to adjust

the trade-off between quality and parameter efficiency especially when the memory resource is

limited.
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5.4.2.3 Reshaping effect:

To evaluate the importance of reshaping, we compare group-wise SuperLoRA with and without

reshaping in 5.5b. For weight-wise LoRA, most weight matrices corrected are square already.

For all splitting with groups G = 1, 4 and 8, we confirmed that reshaping shows smaller number

of parameters and better IS compared with their corresponding non-reshaping counterparts. This

indicates that reshaping ∆W to regular tensor array (square, cube, and hyper-cube) is vital for

SuperLoRA fine-tuning to prevent unbalanced skew tensors when adapting multiple weights at

once.

5.4.2.4 LoKr vs. LoNKr:

In 2D ∆W , we also compared LoKr with our proposed extension LoNKr, a variant of SuperLoRA.

We evaluated LoNKr when the number of splits is K ∈ {2,3,4}, where K = 2 corresponds to the

original LoKr. For the dense factor on the left in LoNKr/LoKr as shown in 5.3c, dimension is

fixed to 6, 8 or 10. 5.6a shows that more splits provide us more choices in low-parameter regimes,

especially for group-wise LoNKr. LoNKr shows much more data points and better IS when the

number of parameters is less than 5,000. And the least parameter for LoKr and LoNKr dropped

greatly from 500 to 150.

5.4.2.5 LoRTA:

LoRTA reshapes ∆Wall to high-order tensor. We evaluated 3D, 4D and 5D, as data points become

much less when the dimension is too small for all planes when order is larger than 5D. From 5.6b,

the higher the order of tensor folding, the less data points we have. In both weight-wise and group-

wise version, 5D LoRTA reduces the least parameter it requires. Especially for group-wise LoRTA,

5D LoRTA requires less than 80 parameters to produce a result compared with beyond 1000 for 2D

LoRTA and beyond 200 for 3D LoRTA, while original LoRA needs about 104 parameters, about

120-fold more parameters. To achieve a comparable IS of LoRA having 104 parameters, LoRTA

(3D) just needs 2×103 parameters, i.e. 5-fold reduction.

74



102 103 104 105

# params

0.02

0.04

0.06

0.08

0.10
IS

Extension of LoKr: IS vs # params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(a) SuperLoRA (LoNKr)

102 103 104 105

# params

0.02

0.04

0.06

0.08

0.10

IS

The effect of higher-order dW: IS distance vs # params (SVHN->MNIST, Pareto frontier only)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(b) SuperLoRA (LoRTA)

Figure 5.6: Performance of SuperLoRA variants: (a) LoNKr as shown in 5.3c; (b) LoRTA when folding to
high-order tensor.

5.4.2.6 Projection effect:

SuperLoRA can use a projection layer F which is randomly initialized but fixed at both fine-

tuning and inference. Linear fastfood projection and nonlinear projection with tanshrink applied

after the linear projection matrix are evaluated. Besides, a modified version of fastfood projection

with random Gaussian instead of random binary B is also tested for both linear and nonlinear

versions, denoted as linearv2 and nonlinearv2 respectively. The projection matrix is shared across

all groups. We evaluated number of groups G ∈ {1,4}, rank r ∈ {1,4,8} and projection ratio

ρ ∈ {0.01,0.1,0.5} on SuperLoRA (2D, reshape) and SuperLoRA (LoRTA, reshape) for 3D, 4D

and 5D tensor.

5.7a demonstrates with smaller projection ratio, required parameters for both SuperLoRA (2D,

reshape) and SuperLoRA (LoRTA, group-wise) are pushed to extremely low-parameter regimes.

The least parameter required becomes only about 30, compared with 10,000 for original LoRA.

Surprisingly, linear version for both methods shows better performance than nonlinear version

which are attached in 5.6.6. Besides, in extremely low-parameter regimes, higher rank with pro-

jection layer for SuperLoRA (LoRTA, group-wise) works better than small ranks itself, showing

promising direction to explore projection layer in extremely low-parameter regime. In terms of

linear v.s. linearv2, linearv2 shows better performance in higher-parameter area while linear works

better in lower-parameter area, even better than SuperLoRA (LoRTA) without projection.
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Figure 5.7: SuperLoRA under different projection modes: linear, linearv2 and shuffling.

5.4.2.7 Shuffling effect:

As another simple projection, we studied a random shuffling to distribute ∆Wgroup before adding it

to corresponding W . We evaluated SuperLoRA (2D) and SuperLoRA (2D, reshape) with/without

shuffling for groups G ∈ {1,4,8,16]} and ranks r ∈ {1,4,8}, where the shuffled indexes are shared

across all groups. The shuffling corresponds to one of fastfood projection modes by setting projec-

tion ratio to ρ = 1 with only permutation matrix Π . As shown in 5.7b, shuffling inside groups had

no harm on IS. It even improved IS for SuperLoRA (2D) in most cases.

5.4.3 Visualization

To better understand the superiority of SuperLoRA, especially in low-parameter regimes, we vi-

sualize a set of generated images from SuperLoRA, as well as dense FT and LoRA, from a range

of parameter setting: high-parameter (> 70,000), middle-parameter (from 5,000 to 10,000), low-

parameter (around 1,000) and extremely-low parameter (< 100) regimes. We selected one image

with the best IS for each hyper-parameter setting we have tested under same level of parameter

amount. 5.8 shows that all generated images by the transfer learning model from SVHN to MNIST

are close to images from MNIST dataset itself with black-white background, removing most do-

main information of color SVHN. SuperLoRA (2D, group8, rank13) in 5.8c shows competitive

results with LoRA (rank8) using 5,000 less parameters.
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Figure 5.8: Visualization of generated images under high-parameter level (> 70,000).

For the middle-parameter regimes, 5.9 shows visualization of LoNKr, SuperLoRA (2D, re-

shape), LoRTA (3D, reshape), LoRTA (4D, reshape) and SuperLoRA (2D, reshape, projection).

More domain information with colorful digits and background occur occasionally. There are also

some missing digits presented in middle-parameter area.

When the number of parameters is as low as 1,000, even though only few choices left like

LoNKr and LoRTA, one can always stretch hyper-parameter settings from middle-parameter level

coupled with fixed linear projection layer to compress the tensor size. In this way, the strength of

middle-parameter level gets extended to low-parameter area. As shown in 5.10, compared with the

visualization from middle-parameter results, more missing digits and more colorful backgrounds

are presented.

Finally, we also visualized a few images from extremely-low parameter level less than 100 in

5.10. Surprisingly, domain transfer in those images is somewhat realized from SVHN to MNIST

even with such an extremely few parameter case such as 31, which is more than four orders of

magnitude smaller than dense FT.

5.5 Conclusion

We proposed a new unified framework called SuperLoRA, which generalizes and extends LoRA

variants including LoKr and LoTR. SuperLoRA provides some extended variants, which we refer
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Figure 5.9: Visualization of generated images under middle-parameter level ([5,000,20,000]).
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Figure 5.10: Visualization of generated images under low-parameter level (1,000) and extremely-low level
(< 100).

to as LoNKr and LoRTA. It offers a rich and flexible set of hyper-parameters, including the rank of

factorization, the choice of projection function, projection ratio, the number of groups, the order of

tensor, and the number of Kronecker splits. Through two types of transfer learning experiments, we

demonstrated that SuperLoRA achieves promising results in parameter efficiency for fine-tuning

at low-parameter and extremely-low-parameter regimes. We could reduce the required number

of parameters by 3 to 10 folds compared to LoRA. Future work includes to study the projection

functions to further improve the efficiency in extremely-low-parameter regimes, and applications

to various transfer learning tasks along with different large models such as LLMs.
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5.6 Supplementary Materials

5.6.1 Illustration of ViT model in detail

The ViT model that we used for the classification task is adapted from a public codebase3. The

detailed structure of the ViT is depicted in 5.11, where we only fine-tune the projection layers for

query and value in the Self-Attention modules. In ViT-base, depth (L in 5.11) is set to be 12 and

dimension is 768. The total number of parameters of the ViT base model is 86.6M.

5.6.2 Illustration of diffusion model in detail

The classifier-free diffusion model [68] that we used for image generation is adapted from a public

codebase4. Its U-Net structure is illustrated in 5.12, which contains 21 attention modules, where

the number of input/output channels of the attention modules is either 64 or 128. We only fine-tune

the query and value projection layers of those attention modules. The total number of parameters

of the U-Net base model is 10.42M, including 300 parameters for the class embedding.

5.6.3 Illustration of grouping mechanism

5.13 illustrates several different cases of the grouping mechanism. 5.13(a) is the conventional

weight-wise grouping, used for typical LoRA. Each weight correction, i.e. ∆Wvℓ and ∆Wqℓ for

value and query projections at layer ℓ, is individually represented by a rank-r decomposition:

AgB⊤
g for group g. 5.13(b) shows layer-wise grouping, where the LoRA unit in each group jointly

adapts both value and query projections in each layer. When we stack multiple weight matrices in a

naïve way, the 2D array will have unbalanced fan-in/fan-out shape, leading to inefficient low-rank

decomposition. 5.13(c) can solve this issue by reshaping the 2D array into a regular square shape

before low-rank decomposition. As the reshaping is already breaking the geometric meaning of the

original 2D weights, the grouping need not necessarily aligned with the weight boundary as shown

3https://github.com/bwconrad/vit-finetune
4https://github.com/coderpiaobozhe/classifier-free-diffusion-guidance-Pytorch
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in a general grouping case of 5.13(d). Further, applying a projection function F (·) as shown in

5.13(e), the element distribution can be shuffled and mixed-up to relax the geometric restriction of

original LoRA. LoRTA can further generalize the reshaping by folding the 2D array to any arbitrary

M-dimensional tensor array by using the Tucker decomposition as shown in 5.13(f). Relaxing the

geometric constraint can improve the parameter efficiency as shown in this chapter. We further

make a geometric analysis of our grouping methods below.

5.6.4 Geometric analysis

SuperLoRA adapts multiple attention modules at once, and relaxes the underlying geometric re-

strictions inherent to the 2D weights for each attention module, by employing grouping, reshaping,

and projection (including shuffling). To better understand how SuperLoRA works differently from

LoRA, geometric analysis is conducted for the classification task. Specifically, we pick 4 different

methods with a comparable number of parameters around 100,000:

• LoRA (2D): #param 147,456, accuracy 0.9113;

• SuperLoRA (2D): #param 115,200, accuracy 0.9170;

• SuperLoRA (2D, reshape): #param 165,572, accuracy 0.9218;

• SuperLoRA (2D, reshape, w/ projection): #param 138,372, accuracy 0.9213.

The weight correction term ∆W is compared to the full dense FT case, which involves 14M pa-

rameters achieving an accuracy of 0.9290. We analyze three different geometric measures with

respective to the FT weight ∆Wdense: i) left-singular similarity; ii) right-singular similarity; and iii)

Euclidean distance. Letting U and V denote the left- and right-singular vectors of ∆W for each
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variant listed above, these metrics are defined as follows:

dL =
1√
k
∥Udense[:, : k]⊤Uvariant[:, : k]∥2, (5.5)

dR =
1√
k
∥Vdense[: k, :]Vvariant[: k, :]⊤∥2, (5.6)

dE =
∥∆Wdense −∆Wvariant∥2

∥∆Wdense∥2
. (5.7)

Note that dE approaches to 0 when ∆W converges to the dense FT case, while dL and dR converge

to 1.

The top k = 5 principal singular vectors are analyzed as shown in 5.14. The ViT model has 12

attention modules, and we plot the total of 24 points for the query and value projection weights.

The first row shows the query weights for dL v.s. dR, dE v.s. dR, and dE v.s. dL from left to right

across the columns. The second and third rows are for the value weights, and both query and value

weights, respectively.

We see that the Euclidean distance dE is significantly decreased for SuperLoRA, especially

with reshaping applied. It explains the improved accuracy with reshaping. Although grouping,

reshaping, and projection can break the geometric meaning of the original 2D weights, the sub-

space similarity is not completely lost. Especially for query weights, SuperLoRA shows higher

right-singular similarity than LoRA. As the embedding vector passes through right-hand side of

the weight, principal right-singular vectors perform as a low-rank subspace mapping of the in-

put vector while the left-singular vectors work as mapping the subspace towards the output vector.

While SuperLoRA with reshaping tends to preserve higher right-singular similarity, LoRA tends to

preserve higher left-singular similarity. Further, it is found that the corrections for query and value

weights behave differently with reshaping, i.e., right-singular similarities for the value weights are

much larger than for query weights.
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5.6.5 Grouping effect on SuperLoRA (1D, dense, with projection)

As the fixed projection matrix is shared across all groups, the number of groups will affect the

size of the projection matrix directly. To explore this influence, dense FT with projection is tested

for different splitting, from 1 to 12 groups. According to 5.15, using 1 group achieves the best

overall accuracy and using 4 or 8 groups are comparable to a smaller projection ratio. When the

projection matrix is too small, e.g., with 12 groups, accuracy drops greatly. This confirms that

jointly updating multiple attention modules is beneficial.

5.6.6 Linear v.s. nonlinear projection

Besides linear projection, nonlinear projection is also examined. We use tanhshrink after the fixed

linear projection, resulting in ‘nonlinear’ and ‘nonlinearv2’. Note that the ‘v2’ projection uses a

Gaussian random vector rather than a binary random vector B for the fastfood projection as shown

in 5.16. More specifically, we consider six variants for the projection function F (·) in this chapter:

• identity (no projection): F (x) = x;

• shuffling: F (x) = xΠ ;

• linear: F (x) = xH ′ diag[G ]Π H diag[B];

• linearv2: F (x) = xH ′ diag[G ]Π H diag[G ′];

• nonlinear: F (x) = tanhshrink
[
xH ′ diag[G ]Π H diag[B]

]
;

• nonlinearv2: F (x) = tanhshrink
[
xH ′ diag[G ]Π H diag[G ′]

]
.

Here, Π performs a random permutation of a vector. The Walsh–Hadamard matrices H ′ ∈

RNin×2N
and H ∈ R2N×Nout are left- and right-truncated versions of a regular Walsh–Hadamard

matrix H ⊗N
2 ∈R2N×2N

, where [·]⊗N denotes N-fold Kronecker power and H2 =
1√
2

[
1 1
1 −1

]
. Letting

Nin and Nout be the number of elements for the input and output of the projection function F (·) with

a compression ratio of ρ = Nin/Nout, the exponent N is chosen as N = ceil[log2(max(Nin,Nout))].
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In practice, the left-truncated Walsh–Hadamard matrix is realized by input zero-padding before

fast Walsh–Hadamard transform. The random vector G is hence of size 2N , and drawn from the

normal distribution. Here, G ′ ∈RNout is another random vector drawn from the normal distribution

while B ∈ {±1}Nout is a random vector drawn from the Rademacher distribution.

5.17 shows the comparison of several projection variants. Surprisingly, with the same number

of parameters, the linear version outperforms the nonlinear versions in most cases.

5.6.7 Transfer learning from ImageNet1k to CIFAR10

For the classification task, transfer learning from ImageNet1k to CIFAR10 is also examined. Most

settings are same as 5.15 for transfer learning from ImageNet21k to CIFAR100. The ViT base

model5 is pretrained for ImageNet1k. It fine-tunes with 3000 steps at most and the best accuracy

is reported. Detailed ranks tested are as follows:

• LoRA (2D): ranks: 1, 2, 4, 6, 8, . . . , 64, 128

• SuperLoRA (2D): groups: 1, 4, 8, 12; ranks: 1, 2, 4, 6, 8, . . . , 64, 128

• SuperLoRA (2D, reshape):

– groups: 1, 4, 12, ranks: 1, 2, 4, 6, 8, . . . , 64, 128;

– group 8, ranks: 1, 2, 4, 6, 8, . . . , 24, 28, 32, 36, . . . , 64

• SuperLoRA (LoRTA: 3D, reshape): groups: 1, 4, 8, 12; ranks: 1–6, 8, 10, 12, . . . , 24

• SuperLoRA (LoRTA: 4D, reshape):

– group 1; ranks: 1–6, 8, 10, 12, . . . , 22

– group 4; ranks: 1–6, 8, 10, 12, . . . , 16

– group 8; ranks: 1–6, 8, 10, 12, . . . , 18

– group 12; ranks: 1–6, 8, 10, 12
5https://huggingface.co/google/vit-base-patch16-224
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• SuperLoRA (LoRTA: 5D, reshape):

– groups 1, 4, 8; ranks: 1–6, 8

– group 12; ranks: 1–6

The classifier head is frozen after selecting most relevant labels in ImageNet1k, i.e. [404, 436, 94,

284, 345, 32, 340, 510, 867], corresponding to [airliner, humming bird, siamese cat, ox, golden

retriever, tailed frog, zebra, container ship, trailer truck]. Classification results can be found in

5.18. Even though only attention modules are adapted, overall transfer learning is excellent, reach-

ing an accuracy close to 0.99. Besides, SuperLoRA significantly outperforms original LoRA in

terms of both classification accuracy and the parameter range it covers as the transfer learning.

SuperLoRA (2D, reshape) shows at least 3-fold reduction in the required number of parameters

compared to LoRA. Noticeably, when comparing the lowest-rank LoRA with around 0.97 accu-

racy, SuperLoRA (2D, reshape, w/ projection) improves the accuracy by about 1%, and moreover

the required number of parameters can be greatly reduced by 10 folds with SuperLoRA (LoRTA:

3D, reshape) to maintain the comparable accuracy.

5.6.8 Transfer learning from SVHN to MNIST

5.6.8.1 Grouping effect (complete results)

Scatter plots of all metrics (FID, IS, KID, MSID, Improved Precision and Improved Recall) are

given in 5.19. Except IS, all metrics show many examples performing better than dense FT, while

worse according to the visualization results, indicating IS is a more reasonable quantitative metric

in this case.

5.6.8.2 Reshaping effect (complete results)

Complete results for reshaping, with scatter plots for all metrics, are shown in 5.20.
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5.6.8.3 SuperLoRA (LoNKr, complete results)

Complete results for SuperLoRA (LoNKr), with scatter plots for all metrics, are shown in 5.21.

5.6.8.4 SuperLoRA (LoRTA, complete results)

Complete results for SuperLoRA (LoRTA), with scatter plots for all metrics, are shown in 5.22.

5.6.9 Transfer learning from MNIST to SVHN

5.6.9.1 Grouping effect

Transfer learning from MNIST to SVHN is also tested. 5.23 shows that some metrics cannot

function when transferred from a simpler dataset to a more complicated one, e.g. FID, IS, KID

and Improved Precision, where some ill-posed cases appear. Besides this, we can still find from

the Pareto frontiers that SuperLoRA extends LoRA to low-parameter regime and works better

occasionally in terms of IS, MSID, Improved Precision and Improved Recall.

5.6.9.2 Reshaping effect

5.24 shows that SuperLoRA with reshaping works better than non-reshaping in most cases in trans-

fer learning from MNIST to SVHN, consistent with the results in transfer learning from SVHN to

MNIST.

5.6.9.3 SuperLoRA (LoNKr)

5.25 demonstrates the results of SuperLoRA (LoNKr). From MSID figure, we can see that, LoNKr

extends LoKr to low-parameter regime, and achieves a better MSID.

5.6.9.4 SuperLoRA (LoRTA)

From FID and KID in 5.26, LoRTA pushes required parameters from 104 to 102 compared with

LoRA, providing more flexibility when the memory is limited.
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5.6.10 Effect of groups in LoNKr and LoRTA

From 5.27 and 5.28, LoNKr and LoRTA behave differently in terms of the number of groups:

for LoNKr, fewer groups are better (than more groups) in low-parameter regime, while they are

comparable in high-parameter regime. However, LoRTA prefers less groups.

5.6.11 Effect of split K in LoNKr

As shown in 5.29, larger K works better than smaller ones in the low-parameter regime.
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Figure 5.14: Geometric similarity analysis (top 5 principal singular vectors).
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Figure 5.20: Complete comparison between reshaping and non-reshaping SuperLoRA.
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(f) SuperLoRA (LoNKr, Improved Recall)

Figure 5.21: Complete results for LoNKr.
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(f) SuperLoRA (LoRTA, Improved Recall)

Figure 5.22: Complete results for LoRTA.
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(f) weight-wise v.s. group-wise (Improved Recall)

Figure 5.23: Complete comparison between weight-wise LoRA and group-wise SuperLoRA for transfer
learning from MNIST to SVHN.
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(f) reshaping v.s. non-reshaping (Improved Recall)

Figure 5.24: Complete comparison between reshaping and non-reshaping SuperLoRA for transfer learning
from MNIST to SVHN.
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(f) SuperLoRA (LoNKr, Improved Recall)

Figure 5.25: Complete results of SuperLoRA (LoNKr) for transfer learning from MNIST to SVHN.
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Figure 5.26: Complete results of LoRTA for transfer learning from MNIST to SVHN.
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Figure 5.27: Effect of groups in LoNKr.
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Figure 5.28: Effect of groups in LoRTA.
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Figure 5.29: Effect of K in LoNKr.
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Chapter 6

Inference Efficiency: A Model Simplification Roadmap for

Image Restoration on Mobile Devices

Inference efficiency aims to compress the model targeting on specific devices to reduce inference

time at deployment. This chapter proposes a model simplification roadmap to reduce the model

size and increase inference speed when deployed on mobile devices [26].

6.1 Introduction

During the past decade, deep learning has been the dominant approach for various computer vi-

sion tasks, including image classification [119, 188], object detection [101, 182], segmentation

[138, 133], and image restoration [171, 16, 197, 196, 41, 33], owing to its remarkable feature

extraction capabilities derived from a substantial number of parameters. However, these large

models often demand significant computational resources and result in longer inference latency,

posing challenges for direct deployment on mobile devices. As a consequence, their application in

mobile photography has been restricted.

To address this challenge, researchers have been exploring different approaches to simplify

deep learning models by reducing the size of models directly, like channel dimensions and the

number of layers [15, 91, 170]. Further, some works design efficient modules to replace inefficient

modules [198, 207, 117, 71, 148, 166, 56], e.g. replacing the original convolution with depthwise

convolution [15, 170]. However, most model compression methods focus on reducing the FLOPs

or runtime only, at the cost of performance loss.

Partial Convolution (PConv) [14] is a recently proposed efficient module that simplifies original
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convolutions by performing calculations only on a portion of the channel dimension. In compar-

ison to depthwise convolution, PConv demonstrates faster runtime during deployment on mobile

devices, even though it requires more parameters. Building on this observation, we can leverage

the idea of adding more parameters during model compression to compensate for any potential

performance loss, particularly in terms of PSNR (Peak Signal-to-Noise Ratio). By doing so, the

model can still achieve faster runtime through model compression algorithms, while also benefiting

from the larger capacity enabled by the additional parameters. As a result, the overall performance

of the model is either maintained or even improved, considering the enhanced capacity brought

about by the increased parameters.

Motivated by this concept, we propose a model simplification roadmap, which encompasses

a set of tricks and techniques designed to optimize image restoration models for deployment on

mobile devices. Through the application of these techniques, we aim to strike the right balance be-

tween model efficiency and performance, enabling the deployment of high-quality image restora-

tion models on mobile devices without compromising on speed or output quality. The contributions

of this chapter are summarized below.

• We propose a model simplification roadmap, consisting of tricks to add parameters to expand

model capacity first and then reduce runtime, i.e. MOre parameters and FAster (MOFA).

Given a small model, the model can be further accelerated before deployment with improved

performance following the roadmap.

• Building upon the concept of partial convolution, we propose Partial Depthwise Convolu-

tion (PDWConv) to further enhance acceleration. PDWConv involves performing depthwise

convolution across only a portion of the channel dimension for input features.

• We tested our roadmap on widely used small image restoration models, PMRID and NAFNet,

on image restoration tasks including image denoising, image deblurring, and image derain-

ing. Extensive experiments show that using our tricks, runtime for PMRID and NAFNet is

decreased by up to 13% and parameters are reduced by 23% with better PSNR and SSIM.
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6.2 Related work

This section presents related works on image restoration models on mobile devices as well as those

modules designed to increase efficiency.

+ + + + +
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Figure 6.1: The overall network structure of PMRID

6.2.1 Image restoration on mobile devices

Image restoration aims to reverse degraded images into high-quality images. Tasks include image

denoising, image deblurring, image draining, etc. These tasks are more commonly used in mobile

devices like mobile photography. This encourages researchers to work on designing efficient deep

learning models considering both runtime and image quality (IQ) [90, 57, 180, 76, 29, 210, 189, 80,

30, 13, 206]. PMRID [170] is one of the earliest efficient models. It carefully designs a U-Net-like

model and increases efficiency by putting most parameters and calculations on the encoder stages.

MicroISP [77] proposes an attention-based multi-branch model so that it can be adapted to the

different computational powers of edge devices flexibly. MFDNet [111] designs a mobile-friendly

attention module coupled with a reparameterization module to increase the denoising efficiency
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Figure 6.2: Detailed Blocks. We replace all Separable Convolutions (stride = 1) with one of the following
convolutions: partial depth-wise convolution and partial convolution (PConv), with the portion 1/4 or 1/2.

on iPhone 11. FusionNet [91] designs a U-Net-like model to take two images from dual cameras

as input and output the deblurred images. Beyond image restoration, MobileOne [162] proposes

re-parameterizable structures to decrease the runtime during inference for general tasks like image

classification. Orthogonally, we propose a roadmap to further accelerate U-Net-like backbones.

6.2.2 Efficient modules on computer vision

The first set of efficient modules is related to the convolution operation. Vanilla convolution per-

forms well but it visits each pixel the number of output channel times, which takes much com-

putation and is inefficient for mobile applications. To improve this, Xception [31] proposes to

use separable convolution, a depthwise convolution followed by a pointwise convolution, which

requires visiting each pixel only once by depthwise convolution. This reduces computation greatly

even counting the following pointwise convolution. PConv [14] proposes to calculate partial con-

volution, i.e. a portion like 1/4 of the input feature across channel dimension as they observe most

kernels are learning similar features.

In addition, some works propose a model simplification process by reducing unnecessary mod-

ules or replacing them with more efficient modules, e.g. NAFNet [15], ConvneXt [110] and Effi-

cient Unet [144]. Other efficient modules include dynamic convolution [54], fast nearest convolu-
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tion [115], IRA block [34], and self-calibrated module [116].

However, all these consider only the efficiency of a single module and attempt to replace them

with more efficient ones. Instead, we consider the efficiency of the entire network and manipulate

inefficient layers according to the FLOPs distribution. PConv module provides us the flexibility to

add parameters freely by setting the portion differently for different layers.

6.3 Roadmap for simplification

This section presents our model simplification roadmap, under the guideline of using more param-

eters wherever possible to compensate for the performance loss brought by rapid runtime decrease.

We employ the widely used PMRID model from image denoising as an example for illustration.

Following our roadmap, either the runtime gets reduced drastically or more parameters are added

to the model in each step. At the end of optimization, the runtime is decreased by 11%, the number

of parameters is reduced by 6% and the PSNR is increased by 0.02dB. Noticeably, this roadmap

can be applied to any U-Net-like model as a model compression method before deployment on

mobile devices.

Settings We train PMRID on SIDD dataset. Runtime is tested on one single v100 GPU with

input size 3× 1024× 1024, averaging 600 rounds. Each trick mentioned below from subsection

6.3.2 is built on top of the previous ones.

6.3.1 Starting point - PMRID

PMRID [170] is a U-Net-like model proposed for raw image denoising on mobile devices as in

Figure 6.1 and 6.2. It is worth noting that PMRID holds many more parameters than normal U-Net-

like image restoration models on mobile devices like DnCNN [204] and NAFNet, but comparable

runtime. This is because PMRID puts most of its parameters on its encoder only like half-UNet

[113], while most U-Net-like models distribute equally on the encoder and decoder. This asym-

metrical design gives more freedom to put even more parameters on high-level encoders, where
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Figure 6.3: Roadmap. Starting from the baseline PMRID, we add each trick on top of all previous tricks,
and it ends with partial_dw.

the input feature size is the smallest and hence the FLOPs will not increase drastically along with

the increase of parameter amounts. For all convolutional layers, most layers use efficient depth-

wise convolution followed by point-wise convolution, excluding the input and output layer, where

vanilla convolutions are used as the channel dimension is relatively small hence it will not add too

many calculations/FLOPs into the whole structure.

6.3.2 Depthwise separable convolution to PConv

Partial convolution (PConv) [14] is a newly proposed efficient replacement for convolution mod-

ules on mobile devices, aiming to reduce both the number of floating-point operations (FLOPs),

related to the number of multiply-adds, and the floating-point operations per second (FLOPS),

considering the hardware deployment efficiency like memory access time. Unlike depthwise con-

volution which requires much memory access as convolution among different depths does not

share parameters, partial convolution calculates only part of the convolution in terms of channel

dimension, e.g. 1/4 by default. In this way, the computation gets reduced as depthwise convolu-
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tion compared with the original convolution while it also enjoys the deployment time reduction due

to parameter sharing as the original convolution, reducing memory access time drastically com-

pared with depthwise convolution. Besides this, partial convolutions provide us more flexibility

to manipulate later, e.g. the portion. Hence, we first replace all depth-wise separable convolu-

tions with partial convolutions. If there are vanilla convolutions exist (except the input and output

layer), we also replace all those convolutions with partial convolutions directly. After this replace-

ment, PSNR and SSIM increased to 39.3345 and 0.9559 respectively and runtime also increased

by 0.76ms. This may be caused by the increase in parameters and FLOPs after the replacement.

From now on, we use this partial convolution version as our model.

6.3.3 More parameters - middle layers

More parameters mean higher network capacity and better performance at most times. This mo-

tivates us to add more parameters to compensate for the PSNR and SSIM loss brought by the

conversion from convolution to partial convolution. To achieve this, we can manipulate how large

the “part" is in partial convolution, e.g. increasing it from default 1/4 to 1/2. Another problem

is, where can we put those extra parameters to increase feature extraction ability without hurting

runtime too much?

As for image restoration tasks, they target reconstructing pixels, not the semantic understanding

of the whole images as high-level vision tasks, e.g. image classification and detection. Thus

we claim that more parameters should be added in shallow layers to increase low-level feature

extraction power. However, more parameters in shallow layers usually mean much larger FLOPs

and runtime as the feature size for shallow layers is usually larger than deeper layers. Considering

both the performance and runtime, we increase the portion from 1/4 to 1/2 in partial convolution

to add parameters on middle layers for both encoder and decoder, e.g., encoder 3 and decoder 2 for

the PMRID model. As a result, PNSR and SSIM decreased a little bit, and runtime increased only

2.9ms even if the number of parameters increased from 2.84M to 3.86M and FLOPs from 2.12G

to 3.25G. This increases model capacity.
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Figure 6.4: Estimated FLOPs distribution across layers before/after applying our roadmap tricks (dimension
threshold d∗ p is 0 here). Note that in PMRID structure, some layers (e.g. input and output layers) are vanilla
convolutions and separable convolutions elsewhere. To get a clear structure-related FLOPs distribution (only
related to the channel dimensions and feature size changes), we estimate the FLOPs by assuming all layers
are vanilla convolutions and excluding FLOPs in skip connections.

6.3.4 More parameters - cheap layers

To add more parameters without adding too many FLOPs and runtime, we first examine the flop

distribution for each layer. There are two ways to achieve this. The most intuitive way is to cal-

culate the FLOPs layer by layer using Python tools. However, this will include some unnecessary

FLOPs we are not interested in here, e.g. calculation in skip connections. Another way is to use

a theoretical formula to estimate the FLOPs of convolution layers only. Here, we use the second

method. The estimated FLOPs distribution can be found in Figure 6.4. It shows that all the de-

coders along with the middle layer take up relatively fewer FLOPs compared with encoders, hence

we call them “cheap layers". As a result, we increase the portion from 1/4 to 1/2 for partial con-

volutions in decoder layers. After adding this trick, PSNR, and SIMM increased to 39.3323 and

0.9560 respectively while runtime only increased 0.5ms. The amount of parameters now is 4.44M,

which is 4× compared with the original PMRID model. After adding parameters to increase the

model capacity using previous tricks, the following subsections focus on reducing the runtime.
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6.3.5 Faster - upsampling/downsampling

Downsampling and upsampling modules are vital in U-Net-like networks. There are some choices

for them, e.g. PMRID used depthwise separable convolution with stride 2 for downsampling and

deconvolution for upsampling while NAFNet employed convolution coupled with pixel shuffle for

upsampling. Instead, paper [144] argued that performing downsampling before the convolution

and upsampling after the convolution can improve the efficiency, different from the normal order

for downsampling and upsampling. Hence, we may first decouple downsampling from convo-

lution with stride 2 to one average pooling layer followed by a convolution layer with stride 1.

Upsampling deconvolutions are replaced with an interpolation layer following a stride-1 convo-

lution layer. We select the most efficient downsampling/upsampling from the choices mentioned

above and the original downsampling/upsampling strategies for different structures. For PMRID,

we replace only the upsampling layers with the decoupled ones. After this change, the runtime

gets reduced by 0.67 ms, PSNR dropped a little bit while SSIM remains the same.

6.3.6 Faster - PConv to PDWConv

To further accelerate it, we propose to replace partial convolution (PConv) with partial depthwise

convolution (PDWConv). As illustrated in Figure 6.5, Partial depthwise convolution calculates

only a portion across the channel dimension of the input features as in PConv and the rest un-

touched part uses identity mapping. Unlike PConv, we perform depthwise convolution for the

selected portion while PConv uses original convolution.

Besides this, noticing that after taking the portion across the channel dimension, the input

feature dimension will be decreased drastically. For features with small channel dimensions, e.g.

64 or 32, only 16 or 8 channels are used to learn the parameters, which may hurt the performance

worse than larger features. Thus, we replace only those PConv with PDWConv for larger channel

dimensions while keeping PConv for smaller ones. For the PMRID model, we set the dimension

threshold d ∗ p (d is the input channel dimension for the current layer and p is the portion) to 32

according to the experimental results.
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Figure 6.5: The structure of vanilla convolution, depthwise convolution, partial convolution, and partial
depthwise convolution.

Finally, the runtime gets decreased to 16.46ms while PSNR and SSIM become 39.2769 and

0.9556 respectively, still better than the original PMRID backbone.

6.4 Experiments

This section presents a detailed ablation study and analysis of some tricks in enhancing PMRID

model on SIDD denoising dataset and both quantitative and qualitative results when we accelerate

other models on RGB image denoising, image deblurring, raw image denoising, image deblurring

with JPEG artifacts and image deraining tasks.

6.4.1 Setting

To verify the effectiveness of our pipeline, we apply it on two different models, NAFNet-tiny [15]

which has only 7 blocks, and the backbone from PMRID [170]. For both models, our settings are

mainly based on NAFNet [15] as PMRID lacks the settings and reported results on most image

restoration benchmarks. Adam optimizer [84] is used with β1 = 0.9, β2 = 0.9 and weight decay 0.

Total iteration is 200K during training. In addition, we report the FLOPs (input size 3×256×256)

and the number of parameters for comparison. For the performance, we use PSNR and SSIM

for quantitative comparison. Qualitative visualization can be found in Section 6.4.5. We tested
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runtime using two ways. The first one is GPU-based as mentioned above. We tested on a single

v100 with 3×1024×1024 as the input size, averaging from 600 rounds. Besides this, we also test

our models on Android phone Tecno Camon 19 Pro based on Pytorch Mobile framework, using

image size 3×256×256, averaging runtime from 3 forward passes. We use a larger input size on

GPU runtime testing because when both our model and input are too small, the variance of runtime

would be comparable to the actual runtime on v100 GPU, leading to biased averaged runtime.

PConv
PConv2 PConv2

down/up PDWConv
FLOPs Param

PSNR(↑) SSIM(↑)
runtime (ms) (↓)

(middle) (cheap) (G) (M) GPU Mobile
baseline 1.11 1.03 39.2769 0.9556 17.65 220

✓ 2.12 2.84 39.3345 0.9559 18.41 212
✓ ✓ 3.25 3.86 39.3007 0.9557 21.31 250
✓ ✓ 2.69 3.46 39.3211 0.9559 19.19 218
✓ ✓ ✓ 3.69 4.44 39.3323 0.9560 21.81 255

✓ 0.95 1.01 39.2741 0.9556 16.99 153
✓ ✓ 1.03 0.95 39.2104 0.9552 14.46 162
✓ ✓ ✓ ✓ ✓ 1.11 0.97 39.2949 0.9558 16.46 196

Table 6.1: Ablation study based on PMRID model for image denoising on SIDD dataset.

6.4.2 Ablation study

In this subsection, we examine how each trick works in this acceleration process. Results can be

found in Table 6.1. We can find the first 3 tricks mainly increased the PSNR and SSIM by adding

more parameters efficiently without adding too much runtime. Specifically, replacing with partial

convolution increased PSNR and SSIM to 39.3345 and 0.9559 respectively compared with the

baseline (PSNR: 39.2769, SSIM: 0.9556). Adding more parameters for middle layers also boosts

PSNR and SSIM to 39.3007 and 0.9557 separately. Adding more parameters on cheap layers

coupled with middle layers together further increased PSNR to 39.3323 and SSIM to 0.9560. All

these tricks bring much more parameters to the model to increase the model capacity without

introducing too many FLOPs and runtime, making space for the runtime reduction tricks to keep

PSNR and SSIM.
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For the upsampling/downsampling modules, PMRID uses deconvolution layers to perform up-

sampling. When we decouple it into a convolution layer and an upsampling layer, the runtime gets

reduced by 0.65ms while PSNR and SSIM are still comparable.

Finally, we replace all PConv with PDWConv, i.e. we use depth-wise convolution to replace

the original convolution in PConv and it results in partial depth-wise convolution as illustrated in

Figure 6.5. When we apply this directly on PConv skipping all steps in the middle, performance

dropped from (PSNR: 39.3345, SSIM: 0.9559) to (PSNR: 39.2104, SSIM: 0.9552), even if runtime

dropped significantly. This also demonstrates the necessity of expanding the model capacity to

increase the model performance in the middle steps.

6.4.3 Analysis of different components

This subsection presents experimental results of how to determine alternatives for each trick.

layers FLOPs (G) Param(M) PSNR SSIM
baseline 1.11 1.03 39.2769 0.9556
+PConv 2.12 2.84 39.3345 0.9559
enc3, dec2 3.25 3.86 39.3007 0.9557
enc2, dec3 2.58 2.93 39.2508 0.9556
enc1, dec4 2.54 2.86 39.2770 0.9556

Table 6.2: Adding more parameters to middle layers on PMRID.

Analysis of middle layers As mentioned above, we aim to add more parameters in middle-level

layers to balance between performance and runtime, as we believe more parameters in shallower

layers would be more appealing for low-level vision tasks as they focus more on extracting low-

level features. However, more parameters in shallow layers also mean many more FLOPs as they

take the largest feature size in the entire U-Net-like network. As a result, we decide to add param-

eters on the middle layers by increasing the portion of PConv from 1/4 to 1/2. The experiments

can be found in Table 6.2.

As adding more parameters on PConv layers in encoder stage 3 and decoder stage 2 in-

creased PSNR from 39.2769 to 39.3007 compared with the PMRID backbone baseline while other
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encoder-decoder pairs even dropped the PSNR and SSIM, we use encoder stage 3 and decoder

stage 2 as our final middle layers to add parameter in PMRID. Besides this, this pair also intro-

duces much more parameters than others. This is because encoder stage 3 in this pair has 4 encoder

blocks while other encoder stages have only 2.

input GT PMRID PMRIDmofa NAFNet NAFNetmofa

GoPro

Rain100L

Figure 6.6: Visualization. Image restoration results from PMRID, PMRIDmo f a, NAFNet and NAFNetmo f a

on different tasks.

replacement Param(M) runtime PSNR SSIM
no 4.44 255 39.3323 0.9560
upsampling 4.42 268 39.3039 0.9561
downsampling 4.61 460 39.3334 0.9559

Table 6.3: Replacement of upsampling/downsampling in PMRID.

Analysis of upsampling/downsampling layers For upsampling, we replace deconvolution

layers with convolution and an upsampling layer in PMRID. This order can decrease the FLOPs

compared with the reverse. For downsampling, the downsampling layer coupled with the con-

volution layer (stride 1) replaced the stride 2 convolution layers. Results can be found in Table

6.3. Here, the runtime is based on Pytorch Mobile tested on Android phones. We can find adding

upsampling can reduce GPU runtime a little bit as in Table 6.1 while increasing inference time on

the device as in Table 6.3. This may be caused by different acceleration implementations for GPU
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Method
runtime (ms)

# params
FLOPs denoising (SIDD) debluring (GoPro) debluring (REDS)

Mobile (G) PSNR SSIM PSNR SSIM PSNR SSIM
PMRID 220∗ 1.03M 1.15 39.2769 0.9556 29.0840 0.9153 27.6501 0.8348
PMRIDmo f a 196(-11%) 0.97M(-6%) 1.11 39.2949 0.9558 29.2274 0.9176 27.6493 0.8347
NAFNet 69∗ 286.6K 1.03 39.2042 0.9555 29.4337 0.9237 27.6747 0.8381
NAFNetmo f a 60(-13%) 222.1K(-23%) 0.94 39.3098 0.9560 29.4810 0.9242 27.7450 0.8398

Table 6.4: Image denoising and deblurring results on different datasets. ∗ Represents we also added split_cat
operations for fair comparison.

Method
Test100 Rain100H Rain100L Test2800 Test1200

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
PMRID 28.3400 0.8690 27.9492 0.8343 32.5887 0.9316 32.6028 0.9260 31.4316 0.9001
PMRIDmo f a 28.2158 0.8739 28.3177 0.8453 32.7912 0.9330 32.6106 0.9272 31.4936 0.9034
NAFNet 28.0719 0.8775 27.8863 0.8414 33.6056 0.9467 32.8942 0.9298 32.6602 0.9181
NAFNetmo f a 28.9186 0.8888 28.5133 0.8531 33.9560 0.9500 32.9450 0.9303 32.4535 0.9150

Table 6.5: Image deraining results on different test datasets.

and Pytorch Mobile on devices. Besides this, downsampling increased runtime on Pytorch Mobile

a lot for PMRID, from 255ms to 460ms. Hence, we replace upsampling only for PMRID.

thres d ∗ p runtime(ms) Param(M) PSNR SSIM
0 14.10 0.94 39.2513 0.9554
16 15.8 0.95 39.2408 0.9557
32 16.46 0.97 39.2949 0.9558
64 16.56 1.21 39.2920 0.9559

128 16.71 1.25 39.2973 0.9561

Table 6.6: The effect of threshold d ∗ p to replace PConv with PDWConv.

Analysis of PDWConv threshold Noticing that PDWConv calculates only a portion of the en-

tire depthwise convolution across channel dimension, and when the dimension is relatively small,

e.g. 32, it may hurt performance drastically compared with the convolution in PConv which hold

much more parameters. As a result, we replace only PConv with PDWConv with a larger channel

dimension and set a threshold to determine. If the channel dimension of input features d divided by

the portion p, i.e. d ∗ p, p = [1/2,1/4], the actual channel dimension to be calculated, is larger than
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the threshold, replace PConv with PDWConv, otherwise, we keep them PConv. Considering both

runtime and PSNR/SSIM, we choose 32 as the threshold for PMRID. It may differ for different

backbones.

6.4.4 Applications

We apply our roadmap with two different backbones, PMRID [170] and NAFNet [15], and get

their accelerated versions PMRIDmo f a and NAFNetmo f a. As layer normalization is not deployable

on mobile devices, we remove this layer directly to test runtime. We tested these models on various

image restoration tasks, including denoising, deblurring, and deraining.

RGB Image Denoising. We test denoising performance on SIDD dataset. Quantitative results

are shown in Table 6.4. This table shows for both PMRID and NAFNet, our accelerated versions

decreased runtime on mobile devices by 11% and 13%, and PSNR and SSIM are also increased

at the same time, from 39.2769dB to 39.2949dB for PMRID and from 39.2319dB to 39.3098dB

for NAFNet. Note that runtime reduction is applied to all the following tasks as we use the same

models for comparison.

Image Deblurring. We tested image deblurring performance on GoPro [125] dataset. As

shown in Table 6.4, we have increased PSNR by 0.14dB for PMRID and 0.05dB for NAFNet

while reducing the runtime by more than 10% for both backbones.

Image Deblurring with JPEG artifacts. As in NAFNet [170], we also tested the image de-

blurring effect with JPEG artifacts. Following settings in NAFNet [170], we use REDS [126]

dataset and evaluate on REDS-val-300. Table 6.4 shows NAFNetmo f a increased PSNR by 0.07dB

compared with NAFNet while the runtime gets decreased and PMRIDmo f a is comparable to PM-

RID.

Image deraining. Following settings in HINet [16], we also train our models on image de-

raining task with Rain13k dataset and test on Test100 [200], Rain100H [187], Rain100L [187],

Test2800 [47] and Test1200 [199] datasets. Quantitative results are shown in Table 6.5. From this

table, our accelerated versions for both backbones have improved the performance for most derain-
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ing datasets while reducing the runtime. Specifically, PMRIDmo f a defeats PMRID on Rain100H,

Rain100L, Test2800 and Test1200 datasets, and NAFNetmo f a improves over NAFNet on Test100,

Rain100H, Rain100L and Test2800 datasets.

6.4.5 Visualization

To understand the qualitative results, we visualize image restoration results on different datasets,

SIDD dataset for image denoising, GoPro dataset for image deblurring, REDS dataset for image

deblurring with JPEG artifacts, and Rain100L dataset for deraining as in Figure 6.6.

For image denoising, we can find all these models, PMRID, PMRIDmo f a, NAFNet and NAFNetmo f a

have good denoising ability. Among them, we observe NAFNetmo f a is the best.

In GoPro dataset, the quality of deblurring results increases from PMRID to PMRIDmo f a where

the shape of the hand in the figure changes from blurred for PMRID to clear for NAFNetmo f a.

For deraining results on Rain100L dataset, we can see both PMRIDmo f a and NAFNetmo f a show

better deraining results than their baselines.

6.5 Conclusion and limitation

This chapter has presented a comprehensive roadmap to accelerate image restoration models before

deploying them on mobile devices. The key idea is to enhance the model’s capacity without sig-

nificantly increasing runtime by strategically adding more parameters to FLOP-insensitive layers

and middle layers. Additionally, we propose the decoupling of upsampling/downsampling layers

and apply partial depthwise convolution to further accelerate the models. The proposed roadmap is

effectively applied to PMRID and NAFNet for various image restoration tasks. Extensive experi-

mental results demonstrate the effectiveness of our strategy. Following our approach, we achieve a

runtime reduction of up to 13% and reduce the number of parameters by 23% while simultaneously

improving the image restoration performance.

Our approach offers a powerful solution for deploying image restoration models on mobile de-
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vices, striking a balance between increased model capacity and faster inference without compro-

mising restoration quality. For deployment, the decrease of parameters is suitable for parameters-

sensitive implementation like sensor programming. The introduction of split_cat operation in

PDWConv and PConv might be less efficient in deployment based on Pytorch Mobile, ONNX and

Caffe and need to be further accelerated.
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Chapter 7

Conclusion and Future Work

In this proposal, we eye on efficient deep learning and propose methods to increase efficiency from

data, model, training and inference. Extensive experiments have demonstrate their effectiveness.

There are also some future works we are investigating, including exploring new image representa-

tions to increase data efficiency of vision tasks, exploring better quantization algorithms, reducing

training time for large vision models from scratch and designing new structure.

As we know, images are represented in terms of pixel density, which enables them to be stored

and reproduced on digital devices without significant loss of quality. In contrast, text or languages

used in natural language processing are crafted by humans primarily for communication purposes.

Text typically demonstrates superior domain generalization and performs better in models like

transformers because it possesses higher information density. However, it’s important to note

that neither representation was originally designed with machine learning models in mind; they

were created for human use. Inspired by this observation, new representations for images, and

potentially for all modalities, can be developed. An ideal representation would prioritize high

information density for machine learning models, rather than for human interpretation.

Current quantization algorithms focus on adaptively/non-adaptively quantize models into lower-

precision, even as low as 1-bit. This brings a compression ratio to 1/32 at most from FP32 to 1-bit.

However, further quantization can be explored, like 0-bit. In this way, quantization becomes prun-

ing and further compression can be made with encouraging more 0-bit quantization, i.e., pruning.

Training large models with extensive datasets is inherently time-consuming, which, while un-

derstandable, is often impractical. To address this, it is possible to explore new algorithms designed

to directly reduce training times. Such advancements could eliminate the need for domain match-
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ing in transfer learning, as reliance on transfer techniques would no longer be necessary.
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