
6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Lesson #6

Modular Programming
and Functions

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Modular Programming
 Proper programming is always modular.

 Modular programming is accomplished by
using functions.

 Functions: Separate program modules
corresponding to the individual steps in a
problem solution.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions
 We know already about the math library

functions that are predefined for our use.
Now we will learn how to program our own
functions.

 Functions are “black boxes” that accept
data and return results. Most library
functions have 1 input and 1 result (like
sqrt). Others have 2 inputs and one result
(like pow).

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Arguments
 We call the value sent to a function

(the input) an argument.

 Functions can have many arguments
but only one result.

 With sqrt(x), x is the argument. The
result is sqrt(x), which can be
assigned to a variable like in y=sqrt(x);

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Defining Functions
 A function is like a separate program that can be

called by the main program to perform a specific
task.

 The function definition is placed on top of the
program code just after the preprocessor
directives and before the main program (or after
the main function with a prototype placed before).

 It is important that the function be declared before
the main program. If you don't, the compiler gives
you an error as your function call is incompatible
with the function definition.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Defining Functions
 A function from the math library is already

defined. So, when you use it in a program
you actually call the function.

 For a function that is defined by you, you
will need first to define the function before
using (or calling) it.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Defining Functions
Here is the syntax to define a function:

functiontype
functionname (type and names of parameters

separated by commas)
{
 Local variable declarations;
 . . .
 C statements executed when function is called
 . . .
 return (result); (only if there is one, must match

function type)
}

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A void Function with No Arguments
 A void function is a function that generates no

results.

/* a function definition */
void
stars (void)
{
 printf ("************************\n");
}
...
 Inside the main program, the function would be

called like this:
stars ();

 See the complete program at c.ihypress.ca/05.php.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A void Function with One Argument
 The stars function only displays the same number

of stars every time.

 What if I wanted to display a different number of
stars that could be linked to a numerical value that
I send to the function?

 All I would need to add is an argument to the
function to specify the number of stars. See stars2
on the next slide. stars2, like stars, has no result.
When a function has no result, we declare its type
as void.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A void Function with One Argument
/* a void function returns nothing */

void
stars2 (int n)
{
int i;

/* a loop displaying a star at each iteration */
for (i=1; i<=n; ++i)
{
printf ("*");
}
/* change line after each series */
printf ("\n");

}

The function would be called like this: stars2(x); See c.ihypress.ca/05.php

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A Function with One Result
 A function that has a result will have a type

(char, double, or int) and will finish with a
return statement.

 The result in the return statement must always
match the type declared on top of the function.

 See an example of a function calculating the
factorial of a number on the next slide.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A Function with One Result
/* this function will return an integer */
int
factorial (int n)
{
int i, product;

product = 1; /* initialization */

/* computes n*n-1... */
for (i=n; i>1; i=i-1)
{
product = product * i;
}

/* the value that goes out */
return (product);

}

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Things to Know
 A function usually does not display anything on

the screen (unless the function contains a printf
statement).

 Variables declared inside a function are unknown
in the main program.

 Variables of the main program are unknown inside
the function.

 The only way to send values from the main
program to a function is through an argument.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A Function with Two Arguments
 A function with two arguments will require two

parameters in the function header. Parameters are
presented in a list separated by commas.

Ex:
double bigger (double n1, double n2)
{
 double larger;
 if (n1 > n2)
 larger = n1;
 else
 larger = n2;
 return (larger);
}

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Remember NOT
 The Number of actual arguments used in a

function call must be the same as the number of
parameters listed in the function definition.

 The Order of arguments used in a function call
must match the order of parameters in the
function definition.

 The Types of arguments used in a function call
must match the types of the corresponding
parameters in the function definition.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Case Study: Is a Number Prime?
 A prime number is a number only divisible by itself or

1.

 A function that determines if a number is prime or not
will accept an integer number as an argument and
return a truth value (1 if prime or 0 if not prime).

 The solution is to try to find a divisor for the number. If
unsuccessful, the number is prime. To find a divisor,
we try all possible numbers to see if it is divisible.

See www.ihypress.net/programming/c/05.php (program
#6) for the solution.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Function Results
 A function can have only one result.

 A function can execute only one return
statement.

 A return statement ends the function
execution and gives the control back to the
calling function (usually main).

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
 We know that functions can only have one

result (one return statement), but we can
trick a function into giving multiple results by
using pointer parameters.

 Let's have a function that takes in a double
number and gives back 3 “results”: a sign, a
whole part, and a fraction.

–3.1416

–

3

0.1416

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
 The best thing to do next is to analyze our

function by making a diagram of what goes in and
of what comes out by labeling everything properly
with their types.

 Notice the 3 arrows on the right side. Since a
function can only have 1 true result, we will have
to do something about the two extra results.

 split
double number

char sign

int whole

double fraction

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
 Of course, our function can only have one

true result (one return), so we'll pick one
(any one will do). Let's pick the sign as the
result. Since the sign is a character, our
function will be a char function.

 The two other “results” (the whole part and
the fraction) will be made accessible to the
main program by the pointer parameters.
The diagram on the next slide shows the
outcome.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
 To get rid of the extra results, we will pick one as

the true result and the other two will be fake
results. We then transfer the fake results to the
left side but as pointers (we add a star to their
names).

 Now our function has only one result, hence
perfectly legal.

 split
double number char sign

int *whole

double *fraction

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
char
split (double number, int *whole, double

*fraction)
{
 char sign;
 if (number < 0)
 sign = '-';
 else
 if (number > 0)
 sign = '+';
 else
 sign = ' ';
 *whole = abs ((int)number);
 *fraction = fabs (number) - *whole;
 return (sign);
}

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Functions with Multiple Results
int
main (void)
{
 double n, f;
 int w;
 char s;
 printf ("Enter a double number:");
 scanf ("%lf", &n);
 s = split (n, &w, &f);
 printf ("The sign is: %c\n", s);
 printf ("The whole part is: %d\n", w);
 printf ("The fraction is: %lf\n", f);
 return (0);
}

 See that when a parameter is a pointer, you must
send an address value to it.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Recursion
 Recursion is simply the calling of a function

by itself.

 We know that we can call a function from
within a function (remember the prime
numbers program?). That function could the
function itself.

 Recursion is very powerful and very easy to
understand but hard to program and debug.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Recursion
 Recursion, in mathematics and computer

science, is a method of defining functions in
which the function being defined is applied
within its own definition.

 Even if properly defined, a recursive procedure
is not easy for humans to perform, as it
requires distinguishing the new from the old
(partially executed) invocation of the procedure

 When the surfaces of two mirrors are exactly
parallel with each other, the nested images that
occur are a form of infinite recursion.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Recursion
 Recursive behavior can be defined by two

properties:

>> A simple base case (or cases)
>> A set of rules which reduce all other cases toward the
base case.

 The following is a recursive definition of a
person's ancestors:

>> One's parents are one's ancestors (base case).
>> The parents of one's ancestors are also one's
ancestors (recursion step).

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Example of Recursion
 The Fibonacci sequence is a classic

example of recursion:

 fib(0) is 0 [base case]

 fib(1) is 1 [base case]

 For all integers n > 1: fib(n) is (fib(n-1) +
fib(n-2)) [recursive definition]

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Recursion in Programming
 Recursion in programming is a method where the

solution to a problem depends on solutions to
smaller/simpler instances of the same problem. The
approach can be applied to many types of problems,
and is one of the central ideas of computer science.

 Most high-level computer programming languages
(like C) support recursion by allowing a function to call
itself.

 There is always a recursive solution to an iterative
algorithm (a loop can be substituted by a recursive
approach).

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Recursive Algorithms
 A common computer programming tactic is to

divide a problem into sub-problems of the same
type as the original, solve those problems, and
combine the results.

 A recursive function definition has one or more
base (trivial) cases, and one or more recursive
(complex) cases. For example, the factorial
function can be defined recursively by the
equations 0! = 1 and, for all n > 0, n! = n(n − 1)!.
Neither equation by itself constitutes a complete
definition; the first is the base case, and the
second is the recursive case.

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

A recursive function
int
factorial (int n)
{
int product;
if (n == 0)
product = 1;
else
product = n * factorial (n-1);

return (product);
}

Compare this function with the loop-based factorial function seen in the previous lesson!

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

Another recursive function
int
multiply (int m, int n)
{
int answer;
if (n == 1)
answer = m;
else
answer = m + multiply (m, n-1);

return (answer);
}

6. Modular Programming and Functions - Copyright © Denis Hamelin - Ryerson University

End of Lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

