
3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Variables, Operators, and
Expressions

Lesson #3

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Variables
 We already know the three main types of variables in

C: int, char, and double. There is also the float type
which is similar to double with only single precision.
Here we will use double exclusively for floating-point
values.

 int is more precise and faster than double.

 A variable, like a memory cell, can only contain one
value at a time.

 Putting a value in a variable that contains another
value destroys the previous value.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Variable Declarations
 To reserve space in memory for variables, a

declaration statement must be written. A simple
declaration consists of the type and the identifier (for
example: int x;).

 When you declare int x; in a C program, the operating
system reserves 32 bits at a certain location in the
computer's memory to store the variable named x.

 The same process applies to char and double variable
declarations except that the operating system
allocates 8 and 64 bits, respectively.

x

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Variables and Memory
 Each variable used in C is stored at a specific

address in the computer's memory. We do not
really care what that address is but it is important
for the operating system. The & operator provides
us with the actual address of the variable in
memory.

 For example, by declaring int x; I create a
variable named x. This variable is stored at the
address &x in the computer's memory.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Pointer Variables
 We know that the address of x can be

represented by &x. It is possible to put such an
address into a variable (known as a pointer
variable or simply pointer).

 A pointer is in fact a variable that contains the
address of another variable.

 A pointer variable can be int*, char*, or double*,
meaning respectively pointer-to-int, pointer-to-
char, and pointer-to-double. The type of the
pointer must match the type of the variable it
points to.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Pointer Variables
Let's have

int x = 10;
int* ptr;
ptr = &x;
 In the third instruction, we place the address of x

into the pointer variable ptr. It is said that ptr
points to x.

 The variable ptr, however, must be of a special
type ready to hold addresses, specifically
addresses of integers (since x is int). So to
declare ptr we use the int* type, not int. int*
means pointer to integer.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Pointer Variables
 Note that int* ptr; can also be written int * ptr or

int *ptr;.

 The * operator reveals the value of the variable
pointed by the pointer variable. Note that the *
operator can only be applied to a pointer variable.
*ptr will follow the arrow to the variable x and
reveal its value. So, *ptr is in reality x.

 *ptr means: Go to ptr, follow the arrow, get the
value.

 printf ("%d", *ptr); /* will display 10. */

10
ptrx

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Inaccuracies
 Putting certain values in a variable can lead to

inaccuracies.

 Cancellation error: happens when the magnitude
of the operands are too different.

 Ex: 10000.0+0.0000015 would give 10000.0
(This is just an example. In reality the
magnitudes must be much more different).

 Arithmetic underflow: happens when a number
too small appears as 0.

 Ex: 0.0000001*0.0000001 would give 0.0 (again
just an example).

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Inaccuracies

 Arithmetic overflow: happens when the
result is too large to be represented. The
result is unpredictable. It is quite easy to get
an arithmetic overflow using integers.

 Ex: 2000000000+2000000000 (int)

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Arithmetic Operators
 Addition (+): 3+4 or 55.1+43.58
 Subtraction (-): 50-20 or 45.3-0.78
 Multiplication (*): 5*10 or 0.6*3.4
 Division (/): 50.0/2.0 or 45/2
 Remainder (%): Also called modulus
Ex: 30%7 is 2, 45%3 is 0, 23%77 is 23.
Important: % works only with integers!

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Integer Expressions
 Expressions containing only integers are called

integer expressions. The result of an integer
expression is always an integer. This is particularly
important for the division operator.

 For example, 5/2 is an integer division and will give 2,
not 2.5.

 There is never a rounding up of values. 99/100 will
give 0 not 1.

 Now that we know about integer division, we find that
a%b is the same as a - ((a / b) * b).

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Double Expressions
 Expressions containing only doubles are

called double expressions. The result of an
double expression is always a double.

 For example 5.0/2.0 is a double division and
will give 2.5.

 99.0/100.0 will give 0.99.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Mixed Expressions
 Expressions containing doubles and

integers are called mixed expressions. The
result of a mixed expression is always a
double.

 For example 5/2.0 or 5.0/2 is a mixed
division and will give 2.5.

 35*2.0 will give 70.0.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Explicit Conversion (Casting)
 The casting (type) operator is used to do explicit

conversions when necessary. Let's suppose I want to
calculate the average of three integer numbers.

int a = 4, b = 3, c = 7, sum = 0; /*note the initialization*/
double average; /* need double for average */
sum = a + b + c;
average = sum / 3; /* 4.0 - that is not the correct average! */

 The solution is to convert either the sum or 3 into a
double to have a mixed expression.

 average = (double) sum / 3;
 or
 average = sum / 3.0;

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Multiple Operator Expressions

 What if an expression contains multiple
operators?

 What would be the answer to 3.0 + 4.0 / 2.0?
 3.5 or 5.0?

 There must be rules to evaluate expressions;
otherwise the result is unpredictable.

 How do you evaluate an expression like
(a + b) / c + a / c – a + b / c * b ?

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Evaluating Expressions
 Rule #1: Parentheses rule: All parentheses must

be evaluated first from the inside out.

 Rule #2: Operator precedence rule:
 2.1 Evaluate unary operators first.
 2.2 Evaluate *, /, and % next.
 2.3 Evaluate + and – next.

 Rule #3: Associativity rule: All binary operators
must be evaluated left to right, unary operators
right to left.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Unary Operators
 Binary operators are the operators with two

operands.
 Ex: a+b, b-c, b*a, a%b, b/c

 Unary operators are the operators with only
one operand.

 +: the unary plus does nothing (+2 is 2).
 –: the unary minus reverses the sign (–(–2)) is 2,

–a reverses the sign of the value of a).

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Unary Operators and Memory
 It is very important to note that the unary

minus (–) operator does not affect the value
of the variable. Only an assignment
operator (or a scanf/fscanf) can change the
value.

for example:
x = –3;
printf ("%d", –x); /* will display 3 but x is still –3! */
x = –x; /* now x is 3! */

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Expression Building
 Let's have an expression to compute the

speed of an object.

 Speed is position2 minus position1 divided
by time2 minus time1.

 s = (p2 – p1) / (t2 – t1);

 Parentheses can always be used to
enhance expression clarity even if they are
not necessary.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Expression Evaluation
Let's evaluate the following expression:
z – (a + b / 2) + w * –y

1. The parenthesis is evaluated first:
 Do b/2 first then add a to the result.
2. The unary operator is evaluated next:
 –y is evaluated.
3. Next, –y is multiplied by w.
4. Next, (a+b/2) is subtracted from z.
5. Finally, add the result of step #4 to the

result of step #3.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Additional Operators
 Some operations cannot be performed with

predefined operators. In that case we need
special functions.

 A function is a program unit that carries out
an operation.

 A function is a “black box” where only what
goes in and comes out is known, not its
inside mechanisms.

functionData in Result out

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Square Root
 Square roots in C are computed with a special

function taken from a special library: the math
library.

 To use that library, we need to include the
proper header file: #include <math.h>

 The square root function is called sqrt and is
used by calling it this way: sqrt (x) where x is
the number we wish to know the square root of.
We can put that answer in another variable
y=sqrt(x);

sqrtx y

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Math Functions
 Math functions can be integrated in other C

statements and expressions. All math
functions use doubles.

 z = a + sqrt (b-c);
 printf ("The square root of %lf is %lf", x, sqrt(x));

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Other Math Functions
 y=floor (x): the largest whole number <= x.

If x is 3.7, y will be 3.0. If x is -14.2, y will be
-15.0.

 y=ceil (x): the smallest number >= x. If x is
3.7, y will be 4.0. If x is -14.2, y will be -14.0.

 y=log(x): finds the natural log of x (ln).
 y=log10(x): finds the decimal log of x (log).
 y=fabs(x): finds the absolute value of x.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Other Math Functions
 sin(x), cos(x), and tan(x) and are

trigonometric functions giving the sine,
cosine, and tangent of an angle expressed in
radians (not degrees).

 radians = degrees * PI / 180
 y = exp (x): gives e to the power of x.
 z = pow (x,y): gives x to the power of y.
 atan(x): calculates the arc tangent of a real

number giving an angle expressed in radians.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Other Functions
 Other functions can be found in the standard

library (also need to #include <stdlib.h>).

 b=abs(a): gives the absolute value of an integer.

 n = rand(): will give a random integer number
between 0 and RAND_MAX, a predefined
constant macro. To find the value of RAND_MAX
on your computer just try this:

printf ("%d", RAND_MAX);

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Shortcut Operators
 In some books, you will see some operations in a short

form when a variable value is changed by an operation
on itself.

 x=x*5; may be shortened to x*=5;
 a=a/2; may be shortened to a/=2;
 i=i+1; may be shortened to i+=1;
 Since adding and subtracting 1 is very common, there

is a shorter version still.
 i=i+1; may be shortened to ++i;
 i=i-1; may be shortened to - -i;

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Increment and Decrement
 ++i is called an increment; --i a decrement.
 i++ and i-- can also be used.
 There is no difference between the prefix ++i and

postfix i++ forms as far as the value of i is
concerned.

 If an assignment is used, there is a difference. In
b=++i; i is incremented and the answer is then
placed into b. In b=i++, the value of i is placed in b
and then i is incremented.

 Note that it is not recommended to use increment
and assignment in the same statement.

3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

End of Lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

