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Variables
 We already know the three main types of variables in 

C: int, char, and double. There is also the float type 
which is similar to double with only single precision. 
Here we will use double exclusively for floating-point 
values.

 int is more precise and faster than double.

 A variable, like a memory cell, can only contain one 
value at a time.

 Putting a value in a variable that contains another 
value destroys the previous value.
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Variable Declarations
 To reserve space in memory for variables, a 

declaration statement must be written. A simple 
declaration consists of the type and the identifier (for 
example: int x;).

 When you declare int x; in a C program, the operating 
system reserves 32 bits at a certain location in the 
computer's memory to store the variable named x.

 The same process applies to char and double variable 
declarations except that the operating system 
allocates 8 and 64 bits, respectively.

x
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Variables and Memory
 Each variable used in C is stored at a specific 

address in the computer's memory. We do not 
really care what that address is but it is important 
for the operating system. The & operator provides 
us with the actual address of the variable in 
memory.

 For example, by declaring int x; I create a 
variable named x. This variable is stored at the 
address &x in the computer's memory.
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Pointer Variables
 We know that the address of x can be 

represented by &x. It is possible to put such an 
address into a variable (known as a pointer 
variable or simply pointer).

 A pointer is in fact a variable that contains the 
address of another variable.

 A pointer variable can be  int*, char*, or double*, 
meaning respectively pointer-to-int, pointer-to-
char, and pointer-to-double. The type of the 
pointer must match the type of the variable it 
points to.
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Pointer Variables
Let's have
 
int x = 10; 
int* ptr;
ptr = &x;
 In the third instruction, we place the address of x 

into the pointer variable ptr. It is said that ptr 
points to x.

 The variable ptr, however, must be of a special 
type ready to hold addresses, specifically 
addresses of integers (since x is int). So to 
declare ptr we use the int* type, not int. int* 
means pointer to integer.
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Pointer Variables
 Note that int* ptr; can also be written int * ptr or 

int *ptr;.

 The * operator reveals the value of the variable 
pointed by the pointer variable. Note that the * 
operator can only be applied to a pointer variable. 
*ptr will follow the arrow to the variable x and 
reveal its value. So, *ptr is in reality x. 

 *ptr means: Go to ptr, follow the arrow, get the 
value.

 printf ("%d", *ptr); /* will display 10. */

10
ptrx
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Inaccuracies
 Putting certain values in a variable can lead to 

inaccuracies.

 Cancellation error: happens when the magnitude 
of the operands are too different.

 Ex: 10000.0+0.0000015 would give 10000.0 
(This is just an example. In reality the 
magnitudes must be much more different).

 Arithmetic underflow: happens when a number 
too small appears as 0.

 Ex: 0.0000001*0.0000001 would give 0.0 (again 
just an example).
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Inaccuracies

 Arithmetic overflow: happens when the 
result is too large to be represented. The 
result is unpredictable. It is quite easy to get 
an arithmetic overflow using integers.

 Ex: 2000000000+2000000000 (int)
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Arithmetic Operators
 Addition (+): 3+4 or 55.1+43.58
 Subtraction (-): 50-20 or 45.3-0.78
 Multiplication (*): 5*10 or 0.6*3.4
 Division (/): 50.0/2.0 or 45/2
 Remainder (%): Also called modulus
Ex: 30%7 is 2, 45%3 is 0, 23%77 is 23.
Important: % works only with integers!
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Integer Expressions
 Expressions containing only integers are called 

integer expressions. The result of an integer 
expression is always an integer. This is particularly 
important for the division operator.

 For example, 5/2 is an integer division and will give 2, 
not 2.5.

 There is never a rounding up of values. 99/100 will 
give 0 not 1.

 Now that we know about integer division, we find that  
a%b is the same as a - ((a / b) * b).
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Double Expressions
 Expressions containing only doubles are 

called double expressions. The result of an 
double expression is always a double.

 For example 5.0/2.0 is a double division and 
will give 2.5.

 99.0/100.0 will give 0.99.
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Mixed Expressions
 Expressions containing doubles and 

integers are called mixed expressions. The 
result of a mixed expression is always a 
double.

 For example 5/2.0 or 5.0/2 is a mixed 
division and will give 2.5.

 35*2.0 will give 70.0.
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Explicit Conversion (Casting)
 The casting (type) operator is used to do explicit 

conversions when necessary. Let's suppose I want to 
calculate the average of three integer numbers.

int a = 4, b = 3, c = 7, sum = 0; /*note the initialization*/
double average; /* need double for average */
sum = a + b + c;
average = sum / 3; /* 4.0 - that is not the correct average! */

 The solution is to convert either the sum or 3 into a 
double to have a mixed expression.

 average = (double) sum / 3; 
 or 
 average = sum / 3.0;
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Multiple Operator Expressions

 What if an expression contains multiple 
operators?

 What would be the answer to 3.0 + 4.0 / 2.0?
    3.5 or 5.0?

 There must be rules to evaluate expressions; 
otherwise the result is unpredictable.

 How do you evaluate an expression like 
(a + b) / c + a / c – a + b / c * b ?
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Evaluating Expressions
 Rule #1: Parentheses rule: All parentheses must 

be evaluated first from the inside out.

 Rule #2: Operator precedence rule: 
 2.1 Evaluate unary operators first.
 2.2 Evaluate *, /, and % next.
 2.3 Evaluate + and – next.

 Rule #3: Associativity rule: All binary operators 
must be evaluated left to right, unary operators 
right to left.
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Unary Operators
 Binary operators are the operators with two 

operands.
 Ex: a+b, b-c, b*a, a%b, b/c

 Unary operators are the operators with only 
one operand.

 +: the unary plus does nothing (+2 is 2).
 –: the unary minus reverses the sign (–(–2)) is 2, 

–a reverses the sign of the value of a).
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Unary Operators and Memory
 It is very important to note that the unary  

minus (–) operator does not affect the value 
of the variable. Only an assignment 
operator (or a scanf/fscanf) can change the 
value.

for example:
x = –3;
printf ("%d", –x); /* will display 3 but x is still –3! */
x = –x; /* now x is 3! */
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Expression Building
 Let's have an expression to compute the 

speed of an object.

 Speed is position2 minus position1 divided 
by time2 minus time1.

 s = (p2 – p1) / (t2 – t1);

 Parentheses can always be used to 
enhance expression clarity even if they are 
not necessary.
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Expression Evaluation
Let's evaluate the following expression:
z – (a + b / 2) + w * –y

1. The parenthesis is evaluated first:
    Do b/2 first then add a to the result.
2. The unary operator is evaluated next:
    –y is evaluated.
3. Next, –y is multiplied by w.
4. Next, (a+b/2) is subtracted from z.
5. Finally, add the result of step #4 to the 

result of step #3.
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Additional Operators
 Some operations cannot be performed with 

predefined operators. In that case we need 
special functions.

 A function is a program unit that carries out 
an operation.

 A function is a “black box” where only what 
goes in and comes out is known, not its 
inside mechanisms.

functionData in Result out



3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Square Root
 Square roots in C are computed with a special 

function taken from a special library: the math 
library.

 To use that library, we need to include the 
proper header file: #include <math.h>

 The square root function is called sqrt and is 
used by calling it this way: sqrt (x) where x is 
the number we wish to know the square root of. 
We can put that answer in another variable 
y=sqrt(x);

sqrtx y
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Math Functions
 Math functions can be integrated in other C 

statements and expressions. All math 
functions use doubles.

 z = a + sqrt (b-c);
 printf ("The square root of %lf is %lf", x, sqrt(x));
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Other Math Functions
 y=floor (x): the largest whole number <= x. 

If x is 3.7, y will be 3.0. If x is -14.2, y will be 
-15.0.

 y=ceil (x): the smallest number >= x. If x is 
3.7, y will be 4.0. If x is -14.2, y will be -14.0. 

 y=log(x): finds the natural log of x (ln).
 y=log10(x): finds the decimal log of x (log).
 y=fabs(x): finds the absolute value of x.



3. Variables, Operators and Expressions - Copyright © Denis Hamelin - Ryerson University

Other Math Functions
 sin(x), cos(x), and tan(x) and are 

trigonometric functions giving the sine, 
cosine, and tangent of an angle expressed in 
radians (not degrees).

 radians = degrees * PI / 180
 y = exp (x):  gives e to the power of x.
 z = pow (x,y): gives x to the power of y.
 atan(x): calculates the arc tangent of a real 

number giving an angle expressed in radians.
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Other Functions
 Other functions can be found in the standard 

library (also need to #include <stdlib.h>).

 b=abs(a): gives the absolute value of an integer.

 n = rand(): will give a random integer number 
between 0 and RAND_MAX, a predefined 
constant macro. To find the value of RAND_MAX 
on your computer just try this:

printf ("%d", RAND_MAX);
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Shortcut Operators
 In some books, you will see some operations in a short 

form when a variable value is changed by an operation 
on itself.

 x=x*5; may be shortened to x*=5;
 a=a/2; may be shortened to a/=2;
 i=i+1; may be shortened to i+=1;
 Since adding and subtracting 1 is very common, there 

is a shorter version still.
 i=i+1; may be shortened to ++i;
 i=i-1; may be shortened to - -i;
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Increment and Decrement
 ++i is called an increment; --i a decrement.
 i++ and i-- can also be used.
 There is no difference between the prefix ++i and 

postfix i++ forms as far as the value of i is 
concerned. 

 If an assignment is used, there is a difference. In 
b=++i; i is incremented and the answer is then 
placed into b. In b=i++, the value of i is placed in b 
and then i is incremented. 

 Note that it is not recommended to use increment 
and assignment in the same statement.
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End of Lesson
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