
2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Introduction to C

Lesson #2

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

C
 The language is called C because its direct

ancestor was called B.

 C was created around 1972 by Kernighan
and Ritchie.

 In 1990, the ANSI C standard was adopted
by the International Organization for
Standardization (ISO).

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Constants in C
 There are three basic types of constants in C.

 An integer constant is an integer-valued number.
We will be concerned here solely with decimal
constants like 0, 1, 743, 5280, 32767, or –764.

 A floating-point constant is a base-10 number
than contains either a decimal point or an
exponent or both like 0., 1., 0.2, 50.0, 12.3,

 –12.667, 2E-8, or 0.006e-3.

 A character constant is a single character
enclosed in apostrophes like 'a', 'x', '9', or '?'.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Preprocessor Directives

 Preprocessor: A system program that modifies
the C program prior to compilation.

 Preprocessor directive: An instruction to the
preprocessor. Begins with #.

 Library: A collection of functions, symbols, and
values.

 Two kinds of preprocessor directives: includes
and defines.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Preprocessor Directives
 #include <stdio.h>: stdio.h, which stands for

standard input/output header, is the header in the
C standard library that contains macro definitions,
constants, and declarations of functions and types
used for various standard input and output
operations. The #include <stdio.h> directive must
be included on top of every C program.

 #define PI 3.1416: this is a constant macro
definition. It associates a name to a value for the
duration of the program. In this case it associates
the symbol PI to the value 3.1416. It is an optional
directive.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Comments

 Comments are lines of code that are
ignored by the compiler. They are placed for
the programmer's benefit.

/* This is a comment */

/* This is another comment. It can be spread
over multiple lines */

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Instructions

 Instructions in C are terminated by a semi-colon (;)

 Line changes and tabs are not important to the C
compiler.

 a=3; b=4; c=5;
 are the same as:
 a=3;
 b=4;
 c=5;

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Skeleton of a Program

#include <stdio.h>
/* optional additional includes */
/* optional constant macros */
int
main (void)
{
 /* optional declarative statements */
 /* one or more executable statements */

 return (0);
}

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

My First Program

#include <stdio.h>

int
main (void)
{
 printf ("This is my first C program.\n");

 return (0);
}

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Skeleton of a Program 2
 This skeleton is also valid. It eliminates parts that are

not absolutely necessary. Do you see the differences?
This version is the old non-ANSI way. It is not the
preferred way but still much in use by many
programmers.

#include <stdio.h>
/* optional additional includes */
/* optional constant macros */
main ()
{
 /* one or more executable statements */
 printf (“This is my first C program\n”);
}

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Variables

 In programming, we often need to have places to
store data. These receptacles are called
variables. They are called that because they can
change values.

 All variables must be declared at the top of the
program. There are three basic types of variables
in C:
 int: for integer (whole numbers).
 double (or float): for real (floating point numbers).
 char: for characters.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Identifiers

 All variables must have names. There are strict
rules for variable names. These rules will apply to
function names later so we will call these names
identifiers.

 A declaration is done with the type followed by the
identifier and a semi-colon (;).

 Ex:
 int lifespan;
 double mass;
 char letter;

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Hard Rules for Identifiers

 Rule #1: An identifier must not be a
reserved word. Reserved words are used
by C exclusively. Here are a few: double,
char, int, do, float, if, return, sizeof, void,
while, typedef, struct, switch, for, else.
See the complete list at:
ihypress.net/programming/c/reserved.html

 Rule #2: An identifier must contain only
letters, digits, or underscores. Abc8 is valid,
Abc-8 is not. _xyz is valid, atom number is
not.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Hard Rules for Identifiers

 Rule #3: An identifier must never begin with
a digit. U238 and _765 are valid, 7abc and
67_q are not.

 Which identifiers are valid (or not)?

Abc xa_32 32X _my files file?1

Price$ abc87 45% return CHAR

8712_ t_a_b int maximum dx@xa

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Soft Rules for Identifiers

 Rule #4: An identifier should not be a
standard identifier. A standard identifier is a
name used by C but is not a reserved word.
printf, scanf are examples of standard
identifiers.

 Rule #5: All-capital identifiers should be
used only for constant macros. Variables
and functions should use lowercase letters
only. You should not mix uppercase and
lowercase letters in an identifier.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Using Variables
#include <stdio.h>
int
main (void)
{
 int temp; /* declare the variable */
 temp = 20; /* assigns value to variable */
 printf ("The temperature is %d.\n", temp);
 return (0);
}

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Placeholders in I/O Statements
 Placeholders (or conversion specifiers) will

substitute the value of the variable inside the
output string (printf).

 You must absolutely match the placeholder with
the variable type:

 %lf: long floating point (double).
 %d: decimal (int).
 %c: character (char).

 \n: a special character meaning that a new line will
be inserted.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Integer Placeholders
 %d is the default integer placeholder. When used

it will simply display the value as is without any
padding. To add padding, to have columns for
example, we need formatted placeholders.

 %nd will reserve n places to display the number.
Justification will be to the right. The negative sign
takes one place.

 If the value is 17 and %4d is used, then it will
display 2 spaces followed by 17 on the screen.
__17

These are spaces, not underscores.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Integer Placeholders
 The number is always displayed in its entirety,

even when the format is too narrow. With –1234
and a %3d placeholder, you would see –1234,
therefore using 5 spaces instead of the 3
requested.

 A negative number in the placeholder changes the
justification to the left of the field. For example,
with a value of –1234 and a %–8d placeholder,
the display will be –1234___ .

Three trailing blanks

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Double Placeholders
 By default the %lf placeholder displays the

number with 6 decimal digits and no padding (may
vary depending on computer system).

 The formatted double placeholder has this format:
%w.dlf, where w is the total width of the field
(including sign and decimal point) and d the
number of decimal digits.

 If the value is 4.56 and the placeholder is %6.3lf,
then the display will be _4.560

One leading blank

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Double Placeholders
 With a double formatted, you always get the

requested number of decimal digits (even if
the field is not wide enough).

 You also always (like the integer
placeholder) get all the significant numbers.

 However, if there are more decimal
precision in the value than in the
placeholder, the value is truncated and
rounded up if need be.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Double Placeholders
 If the value is -32.4573 and the placeholder is

%7.3lf, then you will get 3 decimal digits as
requested plus the significant numbers: -32.457.

 If the value is -32.4578 and the placeholder is
%8.3lf, then you will get 3 decimal digits as
requested plus the significant numbers and
padding: _-32.458. See the rounding-up effect.

 A %8.7lf for a value of 187.123 will produce a
display of 187.1230000.

Note: Internal values in the computer's memory are
 unaffected by placeholders.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Assignment Operator
 The = symbol represents the assignment

operator. It places the value on the right inside the
variable on the left. On the right you may find a
constant (value), a variable, or an expression.

int a, b, c;
a = 10;
b = a;
c = a + b – 3;
a = b – 3;

 What are the values of a, b, and c after these
instructions?

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

The scanf Statement
 Another way to fill a variable is to ask the user for

its value. We do that with the scanf statement.

printf ("Enter the temperature:");
scanf ("%d", &temp); /* see the & sign! */

 temp will contain the value entered by the user at
the keyboard.

 Placeholders are the same. Never use formatted
placeholders in a scanf!

 Never put the & sign in front of a variable in a
printf!

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Modes of Operation
 Interactive mode: User responds to prompts by

typing in data. Data is entered with the keyboard.

 Batch mode: Program takes its data from a data
file prepared beforehand.

 To read from a file we use fscanf instead of scanf.
(We can also use scanf to read from a file by using input redirection)

 To write to a file instead of displaying onscreen,
we use fprintf.
(We can also use printf to write to a file by using output redirection)

 To create a data file, we can use a simple text
editor like notepad.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Reading from a File
 To do that you need first to declare the file

 FILE *in;
 /* notice that FILE is all uppercase and the * before

the name of the file variable. */

 Then the file must be opened
 in = fopen ("mydata.txt", "r");
 /* must exist on your disk! */

 To read from the file, we use fscanf
 fscanf (in, "%d", &temp);

 The file must be closed when not longer needed
 fclose (in);

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Writing to a File
 To do that you need first to declare the file

 FILE *out;

 Then the file must be opened
 out = fopen ("result.txt", "w");
 /* w is for write – it will create a new file on your disk */

 To write to the file, we use fprintf
 fprintf (out, "%d", temp);

 The file must be closed when no longer needed
 fclose (out);

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Input Redirection
 So far we have seen that when we need to read

data from the keyboard we use scanf and when
we need to read from a file we use fscanf.

 In reality, scanf means reading from standard
input, and that usually means the keyboard.

 With a command line, it is possible to redirect the
input from the keyboard to another device, even a
data file. The command line just specifies the file
this way: < data1.txt.

 After redirecting, all scanfs in the program would
read from that file. The keyboard is now
deactivated for data input.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Output Redirection
 We can do redirection also for the output. So far

we have seen that when we need to write data to
the screen we use printf and when we need to
write to a file we use fprintf. printf really means
writing to standard output, and that usually means
the screen.

 With a command line, it is possible to redirect the
output from the screen to a data file. The
command line just specifies the file this way:
> results.txt.

 After redirecting, all printfs in the program would
write to that file. The screen would no longer
display anything from the program. We can also
redirect both the standard input and output to files
this way:
< data.txt > output.txt.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Redirection vs. File I/O
(scanf/printf) (fscanf/fprintf)

Advantages:

 No need to modify program when file name changes.
 No need to open/close files in the program.

Drawbacks:

 The keyboard and/or screen are rendered useless.
 You are limited to one input file and one output file.
 You cannot use file and keyboard (or monitor) in the

same program.

Conclusion:

 Unless you need more than one file or need access to
keyboard and/or monitor in your program, novice
programmers are encouraged to use redirection.

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

Visit this website for more

c.ihypress.ca

Example Programs

2. Introduction to C - Copyright © Denis Hamelin - Ryerson University

End of lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

