
1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Computer Systems and 
Program Development

Lesson #1 



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Computer Systems
 Computers are electronic systems that can 

transmit, store, and manipulate information 
(data).

 Data can be numeric, character, graphic, 
and sound.

 For beginner programmers, the two most 
important are character and numeric.

 To manipulate data, a computer needs a set 
of instructions called a program.

 To write such programs is the object of this 
course.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Algorithms
 An algorithm is a series of instructions on 

how to solve the problem. We need 
algorithms before we can write programs. 
Algorithms have the following characteristics:

 The order of execution of operations must be correct.

 The operations must be clear and unambiguous.

 The operations must be things that are feasible.

 They must produce a result.

 They must stop in a finite amount of time.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

A Simple Algorithm

Baking Bread:

1. Add dry ingredients.
2. Mix.
3. Add water.
4. Knead.
5. Let rise.
6. Bake.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

A More Complex Algorithm
Washing dishes:

1. Stack dishes by sink.
2. Fill sink with hot soapy water.
3. While there are more dishes:
    3.1 Get dish from counter,
    3.2 Wash dish,
    3.3 Put dish in drain rack.
4. Wipe off counter.
5. Rinse out sink.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Another Complex Algorithm
Sorting mail:

1. Get piece of mail from mail box.
2. If piece is personal,
    2.1 Read it.
else 
     if piece is a magazine,  
           2.1.1 Put in magazine rack.
     else 
            if piece is a bill,
                  2.1.1.1 Pay it.
            else 
            if piece is junk mail:
                         2.1.1.1.1 Throw it away.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Another Algorithm
Directions from Toronto to Port Dover:

1. Take the Gardiner Expressway West.
2.  Continue onto Queen Elizabeth Way West.
3.  Continue onto Highway 403 West.
4.  Exit onto Highway 6 South toward Caledonia/Port  

 Dover.
5.  Turn right to stay on Highway 6 South (signs for     

 Caledonia/Port Dover).
6.  Turn right at Greens Rd / Highway 6 South.
7.  Turn left at Caledonia Bypass / Highway 6 South.
8.  Continue to follow Highway 6 South.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

About Algorithms
*  Algorithms are a set of instructions for solving a 

problem. 

*  Once you have created an algorithm, you no 
longer need to understand the principles on which 
the algorithm is based. 

*  For example, once you have the directions to Port 
Dover, you don't need a map any more. The 
information needed to find the correct route is 
contained in the algorithm. All you have to do is 
follow the directions. 



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

About Algorithms
*  Algorithms are a way of sharing expertise with others. 

*  Once you have encoded the necessary intelligence to 
solve a problem in an algorithm, many people can use 
your algorithm without needing to become experts in a 
particular field. 

*  Algorithms are especially important to computers 
because computers are really machines for solving 
problems. 

*  For a computer to be useful, we must give it a problem 
to solve and a technique for solving the problem.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

About Algorithms
*  You can make computers "intelligent" by 

programming them with various algorithms to solve 
problems. 

*  Because of their speed and accuracy, computers 
are well suited for solving tedious problems such 
as searching for a name in a large telephone 
directory.

*  Not all problems can be solved with computers 
because the solutions to some problems can't be 
stated in an algorithm.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Writing an Algorithm
*  We will now learn how to write an algorithm to 

solve a simple problem:

*  Sort the following numbers in ascending order:

7     2     8     3     5
* Think about how you would solve this problem for a 

moment.

*  Sorting is a common problem handled by 
computers. 



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Computer Systems
Types of computer systems:

 Mainframe computers.

 Desktop computers.

 Laptop, notebook and netbook computers.

 Tablets.

 Smart phones.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Components of a Computer



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Storage Types
 CPU registers: Only a few cells on CPU.

 Main memory (RAM): Billions of cells on 
circuits separate from CPU.

 Secondary storage: Hundreds and 
thousands of billions of cells on disks or 
tapes.

 Secondary storage is not volatile (data is 
kept even when power is off).



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Internal Representations
Bit: Binary digit (0 or 1).

Byte: A group of 8 bits. One character.

Word: The width of a memory cell.

Each byte of main memory has an address.

All numbers are represented in binary code.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Binary System
 To count in binary is similar to the usual 

count in decimal: You start at 0 and at 9 you 
run out of digits so you use two instead like 
10. In binary we run out of digits at 1 instead 
of 9. So we count in binary from 0 to 10 
decimal with 0, 1, 10, 11, 100, 101, 110, 111, 
1000, 1001, and 1010.

 Like in decimal, we can pad with zeros to the 
left without changing the value: 
00001001 is still a binary equivalent of 9.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Integer Numbers (Unsigned)
All numbers are converted in binary:

ex: 9 = 1001

 So 9, the integer in a 32-bit system, would look like:
(the spaces between the groups of 4 bits are only there for clarity)

0000 0000 0000 0000 0000 0000 0000 1001

 (Always place the number on the right and pad the 
unused bits with zeros)

 Can you find the decimal value of this number?
0000 0000 0000 0000 0000 0000 0010 1101



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Integer Numbers (Signed)
 There are many ways to represent negative integers. 

The simplest method is called sign-and-magnitude. 
It means using the leftmost bit as a sign bit (1 for 
negative, 0  for positive). In a 32-bit system that 
means that the first bit represents the sign, and the 
other 31 the absolute value of the number.

 For example –9 will be:
1000 0000 0000 0000 0000 0000 0000 1001

 This method has one major drawback, it allows for 
two zero values –0, and +0.

+0: 0000 0000 0000 0000 0000 0000 0000 0000
–0: 1000 0000 0000 0000 0000 0000 0000 0000 



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Integer Numbers (Signed)
 Without a doubt, your personal computer uses a 

method known as two's complement. A little more 
complicated than sign-and-magnitude but not that much 
and it has only one zero value.

 To have –9 in two's complement, you invert all the bits 
in the representation of 9 and add 1.

 You can achieve the same result by starting from the 
right; find the first 1 and invert all the bits to the left of 
that one.

 +9 = 0000 0000 0000 0000 0000 0000 0000 1001
 –9 = 1111 1111 1111 1111 1111 1111 1111 0111



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Hexadecimal Numbers (HEX)
 In computer science, the base-16 numeral system 

is often used to represent groups of 4 bits. It uses 
16 distinct symbols, most often the symbols 0–9 to 
represent values zero to nine, and A, B, C, D, E, F 
to represent values ten to fifteen.

Example:
+9 = 0000 0000 0000 0000 0000 0000 0000 1001

       0        0      0       0       0       0       0       9

 -9 = 1111 1111 1111 1111 1111 1111 1111 0111
        F       F      F      F       F       F       F       7



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Real (Floating Point) Numbers
 Real numbers in binary are expressed with a 

sign, a mantissa (or fraction or significand), and 
an exponent.

 The IEEE Standard for Binary Floating-Point 
Arithmetic (IEEE 754) is the most widely used 
standard for floating-point computation

 The exponent is biased depending on the format 
(127 for single precision, 1023 for double).



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Real (Floating Point) Numbers
Suppose +9.0 in binary:

 The sign is positive. It will be represented by a sign-and 
magnitude convention (0) at the leftmost bit.

 The exponent will be 3 (the closest power of 2 less or equal 
than 9 is 8, which is 2 to the power of 3), then biased 
(3+127=130 for single, 3+1023=1026 for double). That number 
is then converted to an unsigned binary integer to fit into the 8-
bit exponent zone (11-bit zone for double precision).

 To compute the mantissa you take the number (9.0) and divide 
it by 2 to the power of the exponent (in this case 8). You get 
1.125.  The mantissa is then filled from left to right with 1s and 
0s. The first bit represents 0.5 (1 is assumed but not 
represented), the second bit 0.25, ... For 1.125 we need 
1+0.125 which is the third bit at 1, all the others remaining at 0.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Real (Floating Point) Numbers
9.0 in single-precision binary is:
0100 0001 0001 0000 0000 0000 0000 0000

A double number is expressed in 64 bits:
52 bits for the mantissa, 11 bits for the exponent, and 1 

sign bit.

So 9.0 double-precision binary is: 
0100 0000 0010 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

See a IEEE-754 Floating-Point Conversion calculator at 
http://babbage.cs.qc.edu/IEEE-754/Decimal.html



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Real (Floating Point) Numbers
 Now let's do the reverse. Let's convert a binary IEEE-

754 floating-point number into a decimal.
1100 0011 0110 0000 0000 0000 0000 0000

1. Determine 
the sign: That 
one is easy. 1 is 
negative, 0 is 
positive. We 
have negative 
number.

2. Determine the 
exponent: 10000110 
is 128+4+2=134. 
That our biased 
exponent. Subtract 
the bias (127) to find 
the true exponent: 7.
Finally, let's 
calculate 2 to the 
power of 7, we get 
128. This means our 
number is between 
128 and 255.

3. Determine the 
mantissa: The first 
bit represents 0.5, 
the second 0.25, the 
third 0.125.... Here 
we have the two first 
bits at one: 0.5+0.25 
= 0.75. Since 1 is 
always assumed, 
our mantissa value 
is 1.75.

4. Do the final 
computation: 
Multiply the final 
value of step #2 
by the final 
value of step 
#3. 128 times 
1.75 is 224. So 
our number is

 –224.0



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Characters
Characters are expressed using the ASCII code:
'A' = 65     = 01000001
'g' = 103 = 01100111
'$' = 36    = 00100100
'+' = 43 = 00101011
Note that digits expressed in ASCII are different than 

integers or doubles.
'9' = 57 = 00111001

See ASCII code at tinyurl.com/ascii22



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Programming Languages
Many languages exist to program instructions 

to the computer. C is just one of them.

Generation 1: Machine languages (pure binary)
101011101010101010111010101011

Generation 2: Assembly languages (mnemonic 
codes)

MV R1,R3

Generation 3: High-level languages (C, Fortran, 
Java)



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Solving Problems
 Here are the steps required to solve a problem 

with a computer program:

1. Define the problem

2. Analyze the problem.

3. Design a solution.

4. Implement the solution.

5. Test the program.

6. Update and maintain the program.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Implementation

 Here is a detail of step #4, implementation 
(actual programming):

4.1 Write the program source.

4.2 Compile the source code and check for errors.

4.3 Build the program (links your program to the 
libraries and creates the executable file).

4.4 Run the program.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

Why C?
1. It is portable.

2. It is efficient.

3. It is easy to learn.

4. It is modular.

5. It is widespread.



1. Computer Systems and Program Development - Copyright © Denis Hamelin - Ryerson University

End of Lesson


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

