CPS710	JAVACC SCANNING	

PROGRAM STRUCTURE AND INVOCATION
HL.jj file contains scanner and parser specifications for language HL
TestHL.java file contains the main program to use with the scanner and parser.
Compilation:

1)	javacc HL.jj
		
This produces
HL.java: parser for HL
HLTokenManager.java: scanner for HL
HLConstants.java: constants for the scanner: Token definitions and the strings that they match
Token.java: definition of token class
SimpleCharStream.java: I/O buffering
TokenMgrError.java: scanning error class (extension of class Error)
ParseException.java: parse exception class (extension of class Exception)

2) javac *.java
		
To compile all the .java files
Running the program

3)	java –classpath . TestHL

STRUCTURE OF JAVACC FILE (.jj extension)
//--
// JavaCC options for the parser and scanner
// run javacc on the command line to get list of options

options {				
 IGNORE_CASE=false;
 DEBUG _TOKEN_MANAGER=false;
}

//--
// Parser section
PARSER_BEGIN(HL)	// The parameter is your language name

public class HL {		// The class name is your language name	
// Additional Java variables and methods for the parser
}

PARSER_END(HL)

//--
// Scanner section
TOKEN_MGR_DECLS :
{
	// Additional Java variables and methods for the scanner
}

SKIP : 	// Characters that should be skipped by scanner
{
 " " | "\t" | "\n" | "\r"
}

TOKEN : 	// Token definitions
{
 < ELSE: "else">
| < FOR: "for">
}

JAVACC SCANNER COMMANDS
Syntax
Element in italics are optional

<state> action : {
	matching-expression
|	matching- expression
…
|	matching- expression
}

Where a matching expression is:
< #token-name : regular-expression > { java-code } : new-state
States
Users can manually add (meta)states to the FSA. This is used to specify that the scanner should behave differently when it is in a different (meta)state, for example to scan strings and comments.
This is optional
The default state is <DEFAULT> it does not need to be specified but it can be.
The state qualifier in front of an action means that the action will only be executed in that state.
Scanner Actions
SKIP: skips the regular expression
TOKEN: defines a token
SPECIAL_TOKEN: defines a special token which is not parsed but accessed by a different process (used for separate parsing e.g. for JavaDoc documentation)
MORE: matches the beginning of a regular expression which will continue to be matched in another command (the remainder of the regular expression will be matched later).

#Token-name
Is only necessary for TOKEN and SPECIAL_TOKEN actions.
When the # is omitted, this defines a new token.
When the # is included, this defines a regular expression that can be used by other regular expressions as <token-name>
(Note that these are all regular definitions)
Regular-expression
Regular expression that should be matched
Syntax:
	
	Elements and actions
	Example
	Matches

	char
	Literal
	"a"
	"a"

	
	Character class
	["a","b","c"]
	"a" or "b" or "c"

	
	Ranged character class
	["a"-"z"]
	Any lowercase letter

	
	Negation
	~["a"]
	Any single character other than a

	string
	Concatenation
	“ab”
	“ab”

	
	Repetition
	("a"){4}
	"aaaa"

	
	Repetition range
	("a"){2,4)
	"aa" or "aaa" or "aaaa"

	
	Zero or 1
	("a")?
	Either 0 or 1 "a"

	
	Zero or more
	("a")*
	Any number of "a"'s

	
	One or more
	("a")+
	At least one "a"

	
	Or
	“yes” | ”no”
	“yes” or “no”

Java-code
Additional java code to be executed after matching the regular expression
New-state
Manually switches to the state after executing java code
Conflict Resolution Rules
When more than one regular expressions matches the input, JavaCC uses two rules to decide which regular expression to use:
1. Maximal Munch: JavaCC uses the regular expression which consumes the largest amount of input data.
2. [bookmark: _GoBack]Order: If two regular expressions can match exactly the same string (of same length) JavaCC uses the first one listed.
