CPS710	JAVACC PARSING	

JAVACC PARSER OPTIONS
The following JavaCC options may be useful for debugging your work:
 DEBUG_LOOKAHEAD =true;
 DEBUG_PARSER=true;
RUDIMENTS
Upper and lower case reversed for terminals and non-terminals.
All non-terminals are function calls.
After Token definitions:

void non-terminal() :
	{ declarations }
	{	prod
	|	prod
	|	prod
	}

Tokens: either <NAME> or "actual string" allowed
Shorthands: | * + ? allowed (x)? = [x]
 productions:

{} /* nothing */

Or-ed productions are tried in the order presented
Example:

IF_STAT "if" COND "then" STAT "else" STAT "end"
IF_STAT "if" COND "then" STAT "end"

void if_stat() :
{}
{	"if" cond() "then" stat() "else" stat() "end"
|	"if" cond() "then" stat() "end"
}

LL ISSUES
Global Lookaheads
Default: JavaCC assumes language is LL(1)
Can be made LL(k) by setting global LOOKAHEAD(k) at top of file
Unacceptable as previously discussed
Local Lookaheads
Can use local lookahead specific to a specific point in a specific production, called a decision point.

void S() :
{}
{	"a" "b" "c"
|	"a" "d" "c"
}

Decision point right before first "a"
 replace by:

void S() :
{}
{	LOOKAHEAD(2) "a" "b" "c"
|	"a" "d" "c"
}
Second Example:
void S() :
{}
{	"a" "b" "0"
|	"a" "b" "1"
}

Solution 1 – no factoring
void S() :
{}
{	LOOKAHEAD(3)"a" "b" "0"
|	"a" "b" "1"
}

Solution 2 – partial factoring
void S() :
{}
{	"a" (LOOKAHEAD(2) "b" "0" | "b" "1")
}

Solution 3 – full factoring
void S() :
{}
{	"a" "b"("0"|"1")
}
[bookmark: _GoBack]Compare and discuss backtracking.
Syntactic Lookaheads
Example:

void S() :
{}
{	("a")+ "0"
|	("a" | "b")+ "1"
}

Don't know how many letters to look ahead
Solution:

void S() :
{}
{	LOOKAHEAD(("a")+ “0”) ("a")+ "0"
|	("a" | "b")+ "1"
}
How much can it lookahead?
Possibly the entire program
VERY COSTLY AVOID!!!
Very few non-terminals in the assignment need them.
In reality your program would probably look like this:

void S() :
{}
{	lots_of_as_then_0()
|	as_and_bs() "1"
}
void lots_of_as_then_0 () :
{}
{	("a")+ "0"}
void as_and_bs() :
{}
{	("a" | "b")+
}

You may not notice until JavaCC tells you about a choice conflict in S.
 resolution:

void S() :
{}
{	LOOKAHEAD(lots_of_as_then_0 ()) lots_of_as_then_0 ()
|	as_and_bs() "1"
}

Where to put the syntactic lookahead?
where you expect the shortest matching string, or the most likely string to be matched correctly so there is no need to backtrack.
Lookahead-only Productions
Example

void declaration() :
{}
{	LOOKAHEAD(fn_declaration()) fn_declaration()
|	fn_definition()
|	other_declaration()
}
void fn_definition():
{}
{	type() <IDENTIFIER> "(" parameters() ")" "{" body() "}"
}
void fn_declaration():
{}
{	type() <IDENTIFIER> "(" parameters() ")" ":" package() ";"
}
Don't want to read entire definition or declaration to decide which it is.
 define a production simply for looking-ahead:
void fn_decl_lookahead():
{}
{	type() <IDENTIFIER> "(" parameters() ")" ":"
}
void declaration() :
{}
{	LOOKAHEAD(fn_decl_lookahead()) fn_declaration()
|	fn_definition()
|	other_declaration()
}
