

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 1 of 8

CPS109 Course Notes 6

Alexander Ferworn

Unrelated Facts Worth Remembering

 Use metaphors to understand issues and explain them to others.

 Look up what metaphor means.

Table of Contents

Contents

1 ITERATION .. 1

2 WHILE .. 2

3 DO-WHILE ... 4

4 FOR .. 5

5 A BIT MORE ABOUT BREAK .. 7

1 Iteration

Previously we have seen how to make a decision in java using the “if “ or

the “switch”. Often we want to make a decision about doing a task many

times. In effect you hit the decision again and again and again. This

repetition is called iteration or looping, where we decide to do a repetitive

task based on a decision made before the task begins, or after the task has

been done at least one time. This is the topic of this document. The most

basic loop appears as the diagram below. A test is performed before the body

of a loop is executed. If the test evaluates to true then the body of the loop is

executed. At the end of the body the loop returns control back to the test

which is reevaluated for truth. This continues until the test turns false and the

loop is exited.

Test

Body of Loop

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 2 of 8

2 while

A while loop is used to repeat a given statement over and over. Of course, its

not likely that you would want to repeat forever. That would be an infinite

loop, which is generally a bad thing. (There is an old story about computer

pioneer Grace Murray Hopper, who read instructions on a bottle of shampoo

telling her to " lather, rinse, repeat." As the story goes, she claims that she

tried to follow the directions but that she ran out of shampoo. (In case you

don't get it, this is a joke about the way that computers mindlessly follow

instructions.))

Definition:

 A while loop will repeat a statement over and over, but only so long as a

specified condition remains true.

 A while loop can repeat zero or more times.

Syntax:

A while loop has the form:

while (<boolean-expression>)

<statement>

Since the statement can be, and usually is, a block, many while loops have

the form:

while (<boolean-expression>)

{

<statements>

}

When the computer comes to a while statement, it evaluates the boolean-

expression, which yields either true or false as the value. If the value is false,

the computer skips over the rest of the while loop and proceeds to the next

command in the program. If the value of the expression is true, the computer

executes the statements inside the loop. Then it returns to the beginning of

the while loop and repeats the process. That is, it re-evaluates the boolean-

expression, ends the loop if the value is false and continues it if the value is

true. This will continue over and over until the value of the expression is

false; if that never happens, then there will be an infinite loop.

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 3 of 8

while

{Body}

boolean-expression

Here is an example of a while loop that simply prints out the numbers 1, 2,

3, 4, 5:

int number = 1;

while (number < 5)

{

System.out.println(number);

number = number + 1;

}

System.out.println("Done!");

The variable number is initialized with the value 1. So the first time through

the while loop, when the computer evaluates the expression "number < 5", it

is asking whether 1 is less than 5, which is true. The computer therefore

proceeds to execute the two statements inside the loop. The first statement

prints out "1". The second statement adds 1 to number and stores the result

back into the variable number; the value of number has been changed to 2.

The computer has reached the end of the loop, so it returns to the beginning

and asks again whether number is less than 5. Once again this is true, so the

computer executes the loop again, this time printing out 2 as the value of

number and then changing the value of number to 3. It continues in this way

until eventually number becomes equal to 5. At that point, the expression

"number < 5" evaluates to false. So, the computer jumps past the end of the

loop to the next statement and prints out the message "Done!"

 By the way, you should remember that you'll never see a while loop

standing by itself in a real program. It will always be inside a subroutine

which is itself defined inside some class. As an example of a while loop used

inside a complete program, here is a little program that computes the interest

on an investment over several years:

public class Interest2

{

/*

This class implements a simple program that

will compute the amount of interest that is

earned on $17,000 invested at an interest

rate of 0.07 for 5 years. The value of

the investment at the end of each year

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 4 of 8

is printed to standard output.

*/

public static void main(String[] args)

{

double principal = 17000;

// the initial value of the investment

double rate = 0.07;

// the annual interest rate

int years = 0;

// counts the number of years that

// have passed

while (years < 5)

{

double interest = principal * rate;

// compute this year's interest

principal = principal + interest;

// add it to principal

years = years + 1;

// count the current year.

System.out.print

("The value of the invmnt after ");

System.out.print(years);

System.out.print(" years is $");

System.out.println(principal);

} // end of while loop

} // end of main()

} // end of class Interest2

3 do-while

A previous section introduced the while statement, in which the computer

tests a condition at the beginning of the loop, to determine whether it should

continue looping:

The do loop is a variation of this in which the test comes at the end. It takes

the form:

do

<statement>

while (<boolean-expression>);

or, since as usual the statement can be a block,

do

{

<statements>

} while (<boolean-expression>);

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 5 of 8

(Note the semicolon, ';', at the end. This semicolon is part of the statement,

just as the semicolon at the end of an assignment statement or declaration is

part of the statement. More generally, every statement in Java ends either

with a semicolon or a right brace, '}'.)

Note:

 In a Do loop, the body of the loop is executed 1 or more times (at least

once).

while

{Body}

boolean-expression

do

To execute a do loop, the computer first executes the body of the loop -- that

is, the statement or statements inside the loop -- and then evaluates the

boolean expression. If the value of the expression is true, the computer

returns to the beginning of the do loop and repeats the process; if the value is

false, it ends the loop and continues with the next part of the program.

The main difference between the do loop and the while loop is that the body

of a do loop is executed at least once, before the boolean expression is ever

evaluated. In a while loop, if the boolean expression is false when the

computer first checks it, then the body of the loop will never be executed at

all.

For example, consider the following pseudo code for a game-playing

program. The do loop makes sense here instead of a while loop because with

the do loop, you know there will be at least one game. Also, the test that is

used at the end of the loop wouldn't even make sense at the beginning:

do

{

<Play a Game>

<Ask user if he wants to play another game>

} while (<the user's response is yes>);

4 for

The for loop exists to make a common type of while loop easier to write.

Many while loops have the same general form:

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 6 of 8

<initialization>

while (<continuation-condition>)

{

<statements>

<update>

}

For example, consider

int years = 0; // initialize the variable years

while (years < 5)

{

// condition for continuing loop

interest = principal * rate;

// do some statements

principal += interest;

System.out.println(principal);

years++;

// update the value of the variable years

}

This loop can be written as the following for statement:

for (int years = 0; years < 5; years++)

{

interest = principal * rate;

principal += interest;

System.out.println(principal);

}

The initialization, continuation condition, and updating have all been

combined in the first line of the for loop. This keeps everything involved in

the "control" of the loop in one place, which helps makes the loop easier to

read and understand. In general, a for loop takes the form:

for(<initialization>;<continuation-condition>;<update>)

<statement>

or, using a block statement,:

for(<initialization>;<continuation-condition>;<update>)

{

<statement>

}

The continuation-condition must be a boolean-valued expression. The

initialization can be any expression, as can the update. Any of the three can

be empty. Usually, the initialization is an assignment or a declaration, and

the update is an assignment or an increment or decrement operation. The

official syntax actually allows the initialization and the update to consist of

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 7 of 8

several expressions, separated by commas. If you declare a variable in the

initialization section, the scope of that variable is limited to the for

statement; that is, it is no longer valid after the for statement is ended.

Here are a few examples of for loops:

// print out the alphabet on one line of

output

for (char ch='A'; ch <= 'Z'; ch++)

System.out.print(ch);

System.out.println();

// count up to 10 and down from 10 at the same time

for (int i=0,j=10; i < 10; i++,j--)

{

System.out.println(i + “ “ + j);

}

// compute the number 1 * 2 * 3 * ... * 20

long factorial = 1;

for (int num=2; num <= 20; num++)

factorial *= num;

System.out.println("20! = " + factorial);

5 A Bit More About Break

The syntax of the while, do, and for loops allows you to make a test at either

the beginning or at the end of the loop to determine whether or not to

continue executing the loop. Sometimes, it is more natural to have the test in

the middle of the loop, or to have several tests at different places in the same

loop. Java provides a general method for breaking out of the middle of any

loop. It's called the break statement, which takes the form

break;

When the computer executes a break statement, it will immediately jump out

of the loop (or other control structure) that contains the break. It then

continues on to whatever follows the loop in the program. Consider for

example:

while (true)

{ // looks like it will run forever!

console.put("Enter a positive number: ");

N = console.getlnt();

if (N > 0) // input is OK; jump out of loop

break;

console.putln("Your answer must be > 0.");

}

// continue here after break

School of Computer Science

CPS109 Course Notes 6 Alexander Ferworn Updated Fall 15

 8 of 8

A break statement terminates the loop that immediately encloses the break

statement. It is possible to have nested loops, where one loop statement is

contained inside another. If you use a break statement inside a nested loop, it

will only break out of that loop, not out of the loop that contains the nested

loop. There is something called a "labeled break" statement that allows you

to specify which loop you want to break. I won't give the details here; you

can look them up if you ever need them.

