

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -1-

Class Notes 2 (supplementary)

or

 My Life with Shoes

or

An Introduction to Object Orientation using Java

Table of Contents

1. My Cool Shoes .. 1

2. The Truth about Shoes .. 2
3. Making Shoes .. 2
4. Tying shoes ... 3

5. The Class -- the Shoe_factory ... 4
6. Instance Variable -- Used to describe a shoe .. 4

7. Class Variables --keeping track of what the factory produces 5
7. The Constructor -- Making a Shoe object .. 6
8. Instance Methods -- Shoes that Lace Up ... 7

9. Another Instance Method ... 8
10. Class Method--Finding Out About the Factory ... 9

11. The complete Shoe_factory ... 12
12. Engaging the factory to Make Shoes -- A Driver Class 13

13. A sample conversation between the factory, yourself and shoes. 14
14. An Odd Ending .. 14

1. My Cool Shoes

When I was growing up, my friends and I spent a lot of time worrying about
shoes--the right shoes. Shoes that were in, shoes that had the right number of
stripes or swooshes. Because--as you probably know--having the right shoes
brought the admiration of friends, the respect of enemies and possibly even the
attention of the opposite sex. We argued the merits of pneumatic foot attire vs.
cantilevered Velcro accessories. Was it better to have shoes with laces that one
did not tie or shoes with straps that one did not fasten? This was all very
important stuff.

I've had a lot of experience with shoes, as I am sure you have as well, and that is
why I would like to introduce some of the ideas behind Object Oriented
Programming (OOP) from the point of view of footwear.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -2-

2. The Truth about Shoes

While the likes of Nike, Reebok and Adidas would have you believe that the
shoes that they make are somehow better than their competitor's, shoes are
basically very similar. I mean seriously--the idea is to get the shoe to break
before your foot does.

By-and-large shoes are made in some third-world country from designs provided
by the owner (marketer) of that particular shoe brand. For example, a factory in
Indonesia might manufacture shoes for both Nike and Adidas using each
company's respective designs—(adding labels at the end so you'll know who is
gouging you). The plans for shoes, although often owned by different companies
are pretty much the same--a shoe is a shoe is a shoe as it were.

3. Making Shoes

Millions of shoes are produced every year from the factories and those shoes are
put on sale in pairs for us to buy. In fact, many things are put on sale. Go to your
local mall and you're in consumer nirvana.

There are way more things on sale than any of us could ever buy by ourselves. I
think Elvis once put it best when he said that, “if you nail any two objects together
some schmuck will buy the new object off you”1. Actually, that is an interesting
analogy, each one of these things on sale could be thought of as an object in the
world, each different (we get really upset when someone hands us an apple
when we're buying gum, for example), but each one having been made some
place and having similarities to objects of the same type2.

The idea of similarity is important. For example, your nose ring is an object but
it's not the same as your shoe. I mean, they make nose rings in completely

1 Actually, Elvis probably didn't say it but than again some people believe this guy is still alive and walking

amongst us. Despite the fact that he would be a really old fat guy, it is conceivable that he may be reading

this document. If this is, in fact the case, I would like to take this opportunity to apologize to Elvis for any

damage I may have caused his reputation through this (probably erroneous) citation.
2 Yes, I know, trees make apples not factories. However, you can think of a tree as an apple factory of sorts.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -3-

different factories than shoes3. Shoe companies don't usually make any money
based on what you force into your nostril. And you do different things with your
shoes than you do with your nose ring. Most people don't try and lace up their
nose ring and also don't walk around on top of embedded rings on their feet—the
point is, these objects are different types of objects. Think of “objects” as
things in the world.

All these shoe objects, nose ring objects, and all other objects belong to
groups, these are groups of things that are very similar to…well, themselves. You
might think of these things as belonging to a class of objects similar to
themselves. Think of “classes” as the category (or type) of things that share
properties like where they were made, how they behave and actions can
reasonable be performed with them4.

In order to be part of a class, objects need to have been created in similar ways.

4. Tying shoes

I learned to tie my shoes when it became embarrassing to have my mom do it. I
took those laces and I found a method for putting them together so that they
wouldn't drag on the ground and that could be undone quickly when mom wasn't
around. My non-knuckle-dragging friends learned to do the same. Each one of
our shoe objects had its own set of things you could do to it. For example, you
could tie your right shoe and, unless something happened, that shoe would
remain tied until you untied it. Although it doesn't sound like a big deal, if you tied
your left shoe you didn't expect your right shoe to be tied automatically. Also, you
didn't expect to tie your buddy's shoes by tying your own shoe.

3 If you think about it, this is a good thing. Can you imagine the size of a Nike nose ring?
4 Think about the nose ring vs. shoe analogy when you are trying to figure out what I mean.

Shoe Objects

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -4-

In a nutshell, each shoe--mine, yours and everyone else’s-- is an object, is
different from everyone else’s and it has things you can do to it--an example
being a method for tying it.

My Brown

Loafers, All laces

Tied.

So, let's make this a bit more like programming…or making shoes.

5. The Class -- the Shoe_factory

Lets start by making a factory that can manufacture shoes. This is the object-maker or

factory or class. Like any good factory you need a building or framework in which to put

all the stuff used for manufacturing. This is done with the following code;

class Shoe_factory

{

 /* more stuff goes here */
}

Shoe Factory

Well, it's not much to look at.

You can think of this as the building that the shoe is going to be made in without

anything in it. Now we need to add some basic facilities for making basic shoes. For

simplicity, I will assume that this factory can only manufacture shoes with laces but the

shoes it makes can be any colour.

6. Instance Variable -- Used to describe a shoe

When we describe the shoes we wear we normally name the characteristics of the shoe.

For example I might refer to my “Pokemon yellow bath slippers”5.

One of the things we need is a bunch of variables that will hold the values used to

describe the shoes as they are produced. In OOP parlance, these are called instance

variables.

5 Actually, these slippers are my daughter’s…at least that is the story I’m sticking to!

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -5-

 boolean tied = false;

 public String colour;

 public String brand;

The variable "tied" indicates if the shoe has been laced up. "colour" and "brand" are what

they are named--they will hold the colour and brand of the shoe. These instance variables

don't always need to have values supplied to them. In our case the values will be set when

the shoe is actually made.

These instance variables get put in the factory like this. They can appear anywhere in the

factory but people tend to put them first in the class.

class Shoe_factory

{

 boolean tied = false;

 public String colour;

 public String brand;

 /* more stuff goes here */

}

7. Class Variables --keeping track of what the factory produces

The factory also wants to keep track of how many shoes it actually makes. We can do this

with another form of variable. In this case the variable belongs to the factory and not the

instance shoes. It is called a

class variable.

 public static int shoes_made = 0;

We set this variable to zero since no shoes have been made yet--the factory is just getting

started.

It is important to remember that this factory can make many shoes but there is only one

factory. So, there is only one variable called "shoes_made" but there may be many

variables with the name "colour" depending on how many shoes are made by the

factory—each shoe will have its own colour instance variable.

1. This static (or class) variable gets put into the factory like this.

You can tell a class variable

from an instance variable because a class

variable has the key word "static" in its

declaration and an instance variable does not.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -6-

class Shoe_factory

{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 /* more stuff goes here

}

7. The Constructor -- Making a Shoe object

To make a shoe you have to ask the factory to "construct" it. To construct a shoe we need

to start up the part of the factory that makes a shoe. In OOP this is called invoking the

constructor. In a sense, this is like pressing the “on” button of a machine.

The constructor for this class could look like this.

 public Shoe_factory(String bra, String col)

 {

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

The thing that is made by a constructor is called an object. Note how the constructor has

the same name as the class "Shoe_factory". This is always true.

The two things inside the round braces are values

being delivered to the constructor (these are called

“arguments” or “parameters”)--kind of like Nike

coming into a factory with a specific design for a

shoe.

All the constructor does in this case is assign the

formal values being supplied by the arguments to

the instance variables that will hold them when the shoe is made. Our constructor also

adds one to the number of shoes that have been made by this factory by updating the

class variable "shoes_made".

Putting everything together we get.

In Java a constructor creates an

object.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -7-

class Shoe_factory

{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 public Shoe_factory(String bra, String col)

 {

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

 /* more stuff goes here

}

8. Instance Methods -- Shoes that Lace Up

Remember that I said that objects have certain actions that you can perform on

them…like tying your shoelaces. These are called instance methods. Each shoe will get a

copy of its own instance methods as defined by the class--after all, it is a shoe (object)

being made by the factory (class)—instance methods act on the object’s own instance

variables.

I will add two methods that let you

lace and unlace the shoe we

constructed. Also remember what I

said about tying and untying

shoes--the method applies to a

particular shoe (the object) not any

shoe and certainly you can’t “tie”

the shoe factory.

 public void lace(){

 tied = true;

 System.out.println("I am laced.");

 }

 public void unlace(){

 tied = false;

 System.out.println("I am unlaced.");

 }

Instance methods perform actions on the data of

the objects they are part of (instance variables).

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -8-

The code gets added to the Shoe_factory class but is really must be thought of as the code

of the shoes to be made.

class Shoe_factory{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 public Shoe_factory(String bra, String col){

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

 public void lace(){

 tied = true;

 System.out.println("I am laced.");

 }

 public void unlace(){

 tied = false;

 System.out.println("I am unlaced.");

 }

 /* more stuff goes here

}

9. Another Instance Method

We can look at the values and state of individual shoe objects by creating an appropriate

method to do so. The one below does this.

 public void shoestatus(){

 System.out.print("My Brand: " + brand);

 System.out.print(", my Colour: " + colour);

 System.out.println(" laced?: " + tied);

 System.out.println();

 }

This method will simply dump

all the values associated with a

particular shoe. This method is

simply added to the ones

already there.

 You can think of the shoestatus()

method as being analogous to looking down at your

shoes and seeing what state they are in.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -9-

class Shoe_factory{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 public Shoe_factory(String bra, String col)

 {

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

 public void lace(){

 tied = true;

 System.out.println("I am laced.");

 }

 public void unlace(){

 tied = false;

 System.out.println("I am unlaced.");

 }

 public void shoestatus(){

 System.out.print("My Brand: " + brand);

 System.out.print(", my Colour: " + colour);

 System.out.println(" laced?: " + tied);

 System.out.println();

 }

 /* more stuff goes here

}

10. Class Method--Finding Out About the Factory
It would be nice to be able to find out how many shoes that the factory actually made.

This has nothing to do with the individual shoes but is a function of the factory (or class).

Because this value is part of the factory we say that the method used to provide the value is called

a "class method". This is shown below.

 public static void how_many_shoes(){

 System.out.println("This factory has manufactured "

+ shoes_made + " shoe(s).");

 System.out.println();

 }

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -10-

We use this method to output the count of shoes made by the factory. Our factory now looks like

this.

class Shoe_factory{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 public Shoe_factory(String bra, String col){

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

 public void lace(){

 tied = true;

 System.out.println("I am laced.");

 }

 public void unlace(){

 tied = false;

 System.out.println("I am unlaced.");

 }

 public void shoestatus(){

 System.out.print("My Brand: " + brand);

 System.out.print(", my Colour: " + colour);

 System.out.println(" laced?: " + tied);

 System.out.println();

 }

 public static void how_many_shoes(){

 System.out.println

("This factory has manufactured "

+ shoes_made + " shoe(s).");

 System.out.println();

 }

 /* more stuff goes here

}

Next we need to drive the actual process of making shoes. In our case I will use the main

method (every Java program contains a main method…somewhere) to make the shoes.

This could look like the following.

 A class method has the static key word in its declaration. This indicates

that this method will be a class method just like "shoes_made" had static in its

declaration to make it a class variable.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -11-

public static void main(String[] args)

 {

 System.out.println

("Factory, how many shoes have you made?");

 how_many_shoes();

 Shoe_factory runner;

 System.out.println("Factory, make a Silver Nike.");

 runner = new Shoe_factory("Nike","Silver");

 System.out.println

("Factory, now how many shoes have you made?");

 how_many_shoes();

 System.out.println

("Factory, make a brown Buster brown shoe.");

 Shoe_factory casual =

new Shoe_factory("Buster Brown", "Brown");

 System.out.println

("Factory, now how many shoes have you made?");

 how_many_shoes();

 System.out.println

("What is the status of each shoe?");

 runner.shoestatus();

 casual.shoestatus();

 System.out.println("Lace up my runner.");

 runner.lace();

 System.out.println

("What is the status of my shoes now?");

 runner.shoestatus();

 casual.shoestatus();

 }

Let's look at the first few line of the main method.

 Shoe_factory runner;

This tells the Shoe_factory class that you may want it to make a shoe (object) called

"runner".
 runner = new Shoe_factory("Nike","Silver");

This line tells the factory to actually make the shoe called "runner" by invoking the constructor

"Shoe_factory". The values "Nike" and "Silver" will be used by the constructor to set values

in the shoe.
 Shoe_factory casual =

new Shoe_factory("Buster Brown", "Brown");

In this line we do the two steps above in one line of code. Note that this is another shoe called

"casual". It is not the same as the shoe called “runner”.

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -12-

11. The complete Shoe_factory

Have a look at the code for the complete shoe factory.

class Shoe_factory{

 boolean tied = false;

 public String colour;

 public String brand;

 public static int shoes_made = 0;

 public void lace(){

 shoe_message();

 tied = true;

 System.out.println("I am laced.");

 }

 public void unlace(){

 shoe_message();

 tied = false;

 System.out.println("I am unlaced.");

 }

 public void shoestatus(){

 shoe_message();

 System.out.print("My Brand: " + brand);

 System.out.print(", my Colour: " + colour);

 System.out.println(" laced?: " + tied);

 System.out.println();

 }

 public Shoe_factory(String bra, String col){

 factory_message();

 brand = bra;

 colour = col;

 shoes_made = shoes_made + 1;

 System.out.println

("Hurray, we made another shoe!");

 }

 public static void how_many_shoes(){

 factory_message();

 System.out.println

("This factory has manufactured " +

 shoes_made + " shoe(s).");

 System.out.println();

 }

 private void shoe_message(){

 /* Simple instance method to print out a message */

 System.out.print("A message from a shoe: ");

 }

 private static void factory_message(){

 /* Simple class method to print out a message */

 System.out.print("A message from the factory: ");

 }

}

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -13-

NIK
E

Buste
r

Brown

12. Engaging the factory to Make Shoes -- A Driver Class
Going with the discussion I provided above. The "factory" we have created in the class called

Shoe_factory can be used to make objects (shoes) of that class. For example we can create

another class that can use the Shoe_factory class to make shoes. In the example below, the

class Shoe_factory_driver has a main function that uses the methods of the

Shoe_factory class. This is kind of like Nike or Adidas sending their specifications to the

Shoe factory and having those specs turned into shoes specific to them. The driver class is shown

below.

class Shoe_factory_driver{

 public static void main(String[] args){

 System.out.println

("Factory, how many shoes have you made?");

 Shoe_factory.how_many_shoes();

 Shoe_factory runner;

 System.out.println

("Factory, make a Silver Nike.");

 runner = new Shoe_factory("Nike","Silver");

 System.out.println

("Factory, now how many shoes have you made?");

 Shoe_factory.how_many_shoes();

 System.out.println

("Factory, make a brown Buster brown shoe.");

 Shoe_factory casual =

new Shoe_factory("Buster Brown", "Brown");

 System.out.println

("Factory, now how many shoes have you made?");

 Shoe_factory.how_many_shoes();

 System.out.println

("What is the status of each shoe?");

 runner.shoestatus();

 casual.shoestatus();

 System.out.println("Lace up my runner.");

 runner.lace();

 System.out.println

("What is the status of my shoes now?");

 runner.shoestatus();

 casual.shoestatus();

 }

}

NIK
E

CPS109 Course Notes Set 2 (supplementary) Alexander Ferworn Updated Fall 15

 -14-

13. A sample conversation between the factory, yourself and
shoes.

When you compile and run the Shoe_factory class and the

Shoe_factory_driver class the output will be similar to that below. Try and follow

through the program above and see how the output is produced.

Factory, how many shoes have you made?

A message from the factory: This factory has manufactured 0 shoe(s).

Factory, make a Silver Nike.

A message from the factory: Hurray, we made another shoe!

Factory, now how many shoes have you made?

A message from the factory: This factory has manufactured 1 shoe(s).

Factory, make a brown Buster brown shoe.

A message from the factory: Hurray, we made another shoe!

Factory, now how many shoes have you made?

A message from the factory: This factory has manufactured 2 shoe(s).

What is the status of each shoe?

A message from a shoe: My Brand: Nike, my Colour: Silver laced?: false

A message from a shoe: My Brand: Buster Brown, my Colour: Brown laced?: false

Lace up my runner.

A message from a shoe: I am laced.

What is the status of my shoes now?

A message from a shoe: My Brand: Nike, my Colour: Silver laced?: true

A message from a shoe: My Brand: Buster Brown, my Colour: Brown laced?: false

14. An Odd Ending

The preceding has been a simplified discussion of some of the more important features of

OOP for the beginning programmer. OOP is a very powerful and a rather simple concept

once you "get it". Try making your own version of the Shoe_factory using whatever

product you like (Nose_ring_maker might be a good place to start).

Recall that this is all about me. While I was trying to select the “in” shoe to actually

purchase I noticed that I was without sufficient funds to purchase anything but Bata

North Stars. This turned out to work out just fine as I was able to start a conversation

with my future wife who had the same predicament when we met.

