

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 1

Unrelated Facts Worth Remembering
 Get to know the profs. Visit them. Do what they want you

to do. Do not remain anonymous!
 At Ryerson [computer science] getting your degree works

the same way as treading water while trying to catch gold
bricks. Most people can tread water with a bit of practice--
that’s getting into Rerson in the first place. The trick comes
when these sadistic profs. start tossing gold bricks of
knowledge at you and you have to catch them and keep
treading water. You start to see the problem. You win
when you graduate before you sink!i

Table of Contents

1 INTRODUCTION .. 1

1.1 CONVENTIONS .. 1
1.2 SOME WORDS ABOUT CODING STYLE .. 2

2 DATA: PRIMITIVE AND OBJECT ... 2

3 VARIABLES ... 3

4 DATA TYPES ... 3

4.1 STRONG TYPING ... 5

5 IDENTIFIERS OR NAMES ... 6

5.1 DECLARATION ... 7
5.2 ASSIGNMENT .. 8
5.3 LOCAL VARIABLES ... 8

6 CONSTANTS .. 10

7 THE ANATOMY OF A JAVA PROGRAM ... 11

8 STRINGS .. 12

9 OPERATORS, OPERANDS AND EXPRESSIONS ... 14

1 Introduction

The following set of topics is designed to introduce you to some straight-ahead
code. There are no real tricks associated with any of this stuff.

1.1 Conventions

Over time I have fallen into the rut of using several pieces of standard notation
which I use to explain lots of stuff. The notation only has a few parts but you do
need to know what it means. Here it is;

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 2

Symbol Meaning Example

< > Needs more expansion, or

“put your stuff in here”

<variable>

Anything in bold Java keyword/operator, etc =, static

[] Optional if(<condition>) <statement>;

[else <statement>;]

… There is more code but I’m

not going to show you it

…

x = 7;

…

Syntax Tells you about some java

syntax

Syntax:

 <variable> = <expression>;

Definition Defines some concept Definition:

 static means …

Rules: Tells you some java rules Rules:

 Never code Java while sitting

on train tracks.

1.2 Some words about coding style

Follow the coding guidelines in the course text (Chapter 1). The idea behind
acquiring a style is very simple. Most people do not simply write a program and
forget about it. In fact, most programs take on a life of many years with many
people taking on the responsibility of fixing and renewing the code. The problem
is if everyone uses a radically different style it becomes very difficult to see what
the program was intended to do. A coding style helps to communicate intent to
those that follow…and to yourself if you revisit a piece of code after a long time.

A coding style usually provides you a means of showing how the program hangs
together by using tabs or spaces to line up elements that are related (white
space) over many lines of code. This will become clearer as you learn more
Java.

2 Data: Primitive and Object

There are two basic aspects of programming: data and instructions. To work with
data, you need to understand variables and types; to work with instructions, you
need to understand control structures and subroutines/methods/procedures.
You'll spend a large part of the course becoming familiar with these concepts. In
this document we will concentrate on data.

There are two kinds of data in Java. One is called primitive data. Primitive data
is handled by facilities built directly into the language. You are probably most
familiar with this type of data. For example, Java has facilities for dealing with
whole numbers (integers) as you would expect. All primitive data have specific
things you can do with them and places where you can use them as defined by

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 3

the Java language itself. For example, I might be able to add one integer to
another integer and produce a third integer. This is all handled by Java as in any
other high level language.

The second kinds of data are objects. Objects are a little more flexible. Objects
are things that can also take on certain values and be used in certain places but
they also have the added dimension of behavior. In a sense they are data that
has associated actions defined on it. For example, all strings (zero or more
characters put together) in Java are objects and each string you make can be
asked how long it is.

3 Variables

A variable is just a memory location (or several locations treated as a unit) that
has been given a name so that it can be easily referred to and used in a
program. The programmer only has to worry about the name; it is the
programming language’s responsible to keep track of the memory location. But
the programmer does need to remember that the name refers to a kind of "box"
in memory that can hold a certain “type” of data. Variables--as the name
suggests--can change their value.

You can think of a variable as a kind of post office box with a particular address
in memory. The box is only so big and can only fit certain things.

Definition: A variable is a location in memory that has a name and
can store a specific type of data. The value stored in the variable
can change but the type must always be the same.

4 Data Types

In Java--and most other languages--a variable has a type that indicates what
kind of data it can hold. One type of variable might hold integers -- whole
numbers such as 3, -7, and 0 -- while another holds Real (floating point) numbers
-- numbers with decimal points such as 3.14, -2.7, or 17.0. (Yes, the computer
does make a distinction between the integer 17 and the floating-point number
17.0; they actually look quite different inside the computer.)

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 4

There could also be types for individual characters ('A', ';', etc.), strings ("Hello",
"A string can include many characters", etc.), and less familiar types such as
dates, colors, sounds, video, or any other type of data that a program might need
to store. At the end of the day all this data is stored in a computer as digital bits
(binary) but we can’t manipulate it that easily unless we use a bit of abstraction.

We would quickly run into problems if all our calculations had to be in binary.
Everyone would have to agree on how binary would represent other things like
characters or floating point numbers. To avoid this problem there has been a
certain amount of agreement about how binary numbers will be used to represent
these things—called types, so you don’t have to worry. The thing to remember is
that in the background it is all just bits being twiddled.

There are nine fundamental data types in Java that we are interested in at the
moment:

Type example value range of values comments

boolean true true or false 1 bit

byte 3, -8, 0 -128 to 127 1 byte

short -30000, 28 -32768 to 32767 2 bytes

int 89, -945, 37865 4 bytes

long 89L, -945L, 5123567876L -9223372036854775808 to

9223372036854775807

8 bytes

float 89.5f, -32.5f -3.4E38 to 3.4E38 with 7

significant digits accuracy

4 bytes

double 89.5, -32.5, 87.6E45 -1.7E308 to 1.7E308 with

15 significant digits

accuracy

8 bytes

char 'c', '9', 't' Unicode Characters 2 byte

String “This is a string” Unlimited number of

ASCII characters

NB: This is not

a fundamental

data type in java

Strings are a reference or object type, where all the rest are primitive types.
However the Java compiler has special support for strings so this sometimes
appears not to be the case.

Notice that Java supports 4 types of integers (byte, short, int and long) and 2
types of floating point numbers (float and double).

The boolean data type has only two valid values: true and false. A boolean
variable is used to indicate if a particular condition is true or not. But, it can also
be used to represent any situation that has two states (on or off for example).

Characters in Java are another fundamental data type. A “character set” is a list
of characters in a particular order. Each programming language supports a

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 5

particular character set that defines the valid values for a character variable. Java
uses the Unicode standard for character representation.

You may be used to the ASCII (American Standard Code for Information
Interchange) representation in other languages that can represent a character in
1 byte however Java was intended to represent more than the Latin characters
used in America and Europe. Unicode has space to represent other character
sets but each character must take up 2 bytes to allow this.

Strings can be thought of as a bunch of characters put together. An example of a
string literal is:

“this is a test”

Everything between the double quotes is part of the string including blanks. You
would think that strings are a data type in Java and you would be wrong. In fact
there is a String class in java that has a whole bunch of methods available for
dealing with them. This will be discussed further in a later section.

4.1 Strong Typing

Java is a language that is strongly typed. This means that each variable (or
constant) must be associated with a specific type for the duration of its
existence, and you cannot assign a value of one type to a variable of an
incompatible type. The intent is to try and prevent you from creating inadvertent
errors by forcing the computer to make an approximation in its conversion.

Conversions are something you have to learn to live with in Computer Science.

To understand this problem let us look at the value one third. One third can be
represented exactly by using the integer 1 divided by the integer 3, or 1/3. We all
know that 1/3 + 1/3 + 1/3 is equal to 1. However, if we were to actually do the
divisions (as anyone with a calculator knows) 1/3 cannot be represented as an
integer and must be converted into a real or floating point number which can be
represented approximately as 0.3333333. This is an approximation because the
3 keeps repeating and it never stops. If we add 0.3333333 to itself 3 times we get
0.999999. This is not the same as 1. We have lost what is called precision or
accuracy. Java will not let you unintentionally lose precision thus making this type
of error impossible.

Rules:
 Each value in memory must be associated with a specific data type.
 This data type determines what operations we can perform on the data.

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 6

5 Identifiers or names

An identifier is the equivalent of a name for something in a program. Names are
used to refer to many different things. In order to use those things, a programmer
must understand the rules for giving names to them and the rules for using the
names to work with the things to which they refer. That is, the programmer must
understand the syntax and the semantics of names.

In, Java, a name is a sequence of one or more characters. It must begin with a
letter and must consist entirely of letters, digits, the underscore character '_', and
the dollar sign character '$'. For example, here are some legal names:

N n rate x15 a_long_name time_is_$ HelloWorld

Uppercase and lowercase letters are considered to be different, so that
HelloWorld, helloworld, HELLOWORLD, and hElloWorLD are all distinct names.

Certain names are reserved for special uses in Java, and cannot be used by the
programmer for other purposes. These reserved words include: class, public,
static, if, else, while, and several dozen other words.

Java is actually pretty liberal about what counts as a letter or a digit. Java uses
the Unicode character set, which includes thousands of characters from many
different languages and different alphabets, and many of these characters count
as letters or digits. However, I will be sticking to what can be typed on a regular
English keyboard.

Finally, I'll note that often things are referred to by "compound names" which
consist of several ordinary names separated by periods. You've already seen an
example: System.out.println. The idea here is that things in Java can contain
other things. A compound name is a kind of path to an item through one or more
levels of containment. The name System.out.println indicates that something
called "System" contains something called "out" which in turn contains something
called "println".

I'll use the term identifier to refer to any name -- single or compound -- that can
be used to refer to something in Java.

Rules:
 Must start with the letter A-Z or a-z
 Can use both alphabetic and numeric characters and the underscore

character
 There cannot be any spaces in the name
 you cannot use Java keywords as names
 the Java language is case sensitive.

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 7

5.1 Declaration

You can’t start using a mailbox until it is assigned to you by the post office. The
same is true of memory—you must tell Java that you want to use some memory
to store something like a variable. You do this when you write the program by
declaring space for what you want to store.

Syntax:
The basic syntax for the declaration of a variable in java is

<data type> <variable-name> [= <expression>];

I my create a variable of type integer by writing the following;

 int my_mailbox;

You can create several variables in the same declaration, if you separate them
by commas. For example:

double x,y;

char first = 'D', middle = 'J', last = 'E';

int i, j = 17;

In the last line, the initialization applies only to j. The value of i is left undefined.
(For variables defined outside subroutines, Java will automatically provide i with
an initial value of 0 in this case. Variables inside subroutines must be explicitly
given values before they are used in an expression.)

Here is an example of a java program, which declares a bunch of different
variables and does nothing else.

// Example: a bunch of declarations

class BunchDeclares

{

public static void main (String args[])

{

boolean b = true;

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 8

int low = 1;

long high = 76L;

long middle = 74;

float pi = 3.1415292f;

double e = 2.71828;

String s = "Hello World!";

}

}

5.2 Assignment

Programming languages always have commands for getting data into and out of
variables and for performing computations with data. This is accomplished
through assignment. Assignment happens through the assignment operator or
“=”.

The general form of an assignment is;

<left side> = <right side>;

Where <left side> must be a variable capable of accepting the value produced by
<right side>. The value of <right side> will not change.

Consider the following declarations followed by the final statement;

 float interest;

 float principle = 300.0;

 …

interest = principal * 0.07;

<left side> in this case will take on the value of principal multiplied by 0.07.

syntax
 An assignment statement has the basic syntax of

<Variable name> = <expression>;
 On execution, the expression is evaluated and its resulting value is assigned

to the variable.
 A variable can only store one value of its declared type, and new values

destroy old ones.

5.3 Local variables

Variables defined inside a subroutine (you will have to excuse me, you have
probably read that I use subroutine, method, procedure interchangeably…for the

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 9

moment they are) are called local variables for that subroutine. You can think of a
subroutine as anything contained within curly braces. ({ }).

Declarations exist only inside the subroutine, while it is running, and are
completely inaccessible from outside. Variable declarations can occur anywhere
inside the subroutine, as long as each variable is declared before it is used in any
expression. Some people like to declare all the variables at the beginning of the
subroutine. Others like to wait to declare a variable until it is needed and its initial
value is known.

Style:
 Declare important variables at the beginning of the subroutine, and use a

comment to explain the purpose of each variable.
 Declare "utility variables" which are not important to the overall logic of the

subroutine at the point in the subroutine where they are first used.

Here is a simple program using some variables and assignment statements:

public class Interest

{

/*

This class implements a simple program that

will compute the amount of interest that is

earned on $17,000 invested at an interest

rate of 0.07 for one year. The interest and

the value of the investment after one year are

printed to standard output.*/

public static void main(String[] args)

{

double principal = 17000;

// the value of the investment

double rate = 0.07;

// the annual interest rate

double interest;

// interest earned in one year

interest = principal * rate;

// compute the interest

principal = principal + interest;

// compute value of investment

// after one year, with interest

// (Note: The new value replaces

// the old value of principal.)

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 10

System.out.print("The interest earned is $");

System.out.println(interest);

System.out.print

("The value after one year is $");

System.out.println(principal);

} // end of main()

} // end of class Interest

6 Constants

All the rules that apply to variables apply to constants except that after
declaration their value cannot change.

Definition
 constant: a spot in memory which, after initialization, never changes value

Many programs have values that do not change while the program is running, or
they might not even change in the real world (pi for example, or the amount of
the provincial sales tax) Java provides the facility to declare data items as
constants and give them a value.

Rules:
 Constants can only be declared at the top of a class and not as local

variables within a method. (This will become clearer when we discuss the
anatomy of a Java program)

Syntax:
The basic syntax for the declaration of constants in java is;

final <data type> <constant name> [= <final value>];

Here is an example program with a constant declared in it.

// Example: Declares a bunch of declarations

class MoreDeclares

{

 final String t = “The first declaration”;

public static void main (String args[])

{

boolean b = true;

int low = 1;

long high = 76L;

long middle = 74;

float pi = 3.1415292f;

double e = 2.71828;

String s = "Hello World!";

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 11

}

}

7 The Anatomy of a Java Program

Every Java application program must define a subroutine called main, with a
definition that takes the form:

public static void main(String[] args)

{

<statements>

}

The word public here means that this subroutine can be called from outside the
program. This is essential because the Java interpreter actually runs a program
by calling its main subroutine. The remainder of the first line is harder to explain;
for now, just think of it as part of the required syntax. The definition of the
subroutine -- that is, the instructions that say what it does -- consists of a
sequence of "statements" enclosed between braces, { and }.

Here, I've used <statements> as a placeholder for the actual statements. I will
always use this format: anything that you see in bold text (and in green if your
browser supports colored text) is a placeholder that describes what you need to
type when you write an actual program.

In Java, a subroutine can't exist by itself. It has to be part of a "class". The main
subroutine must be part of a public class that looks like this:

public class <program-name>

{

<optional-variable-declarations-and-methods>

public static void main(String[] args)

{

<statements>

}

<optional-variable-declarations-and-methods>

}

Note that the name on the first line is the name of the program as well as the
name of the class. Thus, the name of the hello java program given previously is
Hello. This program should be saved in a file called Hello.java, and when it is
compiled, a file named Hello.class will be produced. The resulting class file,
Hello.class, contains Java bytecode that can be executed by a Java interpreter.

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 12

Also note that a program can contain other methods besides main() as well as
things called "variable declarations." You'll learn more about these later.

Style:
We will be dealing a lot with identifiers for variables and constants. I suggest the
style that all variables are named with all lowercase characters. Constants should
use all UPPERCASE characters (this is not a rule but is good to do to avoid
confusion between the two).

8 Strings

Strings are not a native type like int or char in java but are a class…the String
class. When you make a string you are really making an object of the string class
which is part of the java.lang package.

Unlike other objects, we don’t need to use the new constructor (discussed later)
with strings, we can simply use a declaration like the following;

 String name = “Alex”

But, since you don't know what a constructor is just remember that you can do
the above.

The following code shows two ways of making a String;

class stringmaker

{

 public static void main(String[] args)

 {

 String name1 = “Alex”; //way 1

 String name2 = new String(“Alex”); //way 2

 System.out.println(name1);

 System.out.println(name2);

 }

}

Once a String object contains a value, it cannot be lengthened, shortened, nor
can any of its characters change—it is immutable.

There are several methods in the String class that will return new strings that are
often the result of modifying the original value.

Here are some useful methods (subroutines) as illustrated in the following
program. Don't worry about the term "method" too much. Methods are simply a

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 13

functions that become available whenever a value of certain type is created. Let
me give you a very harsh introduction. When a factory makes a car and we buy
it, in a sense we have bought an object that looks like a car. In fact we know from
our experience that each car has a certain number of functions--methods if you
like--that can work for us. For example, I can start the car. I can drive the car….I
can get the car to tell me how much fuel is left…see if you can relate this to the
String you just bought in the example below.

class stringmangler

{

 public static void main(String[] args)

 {

 String name = “abcdefghijklxyz”;

 System.out.println(“The third character is “

+ name.charAt(3));

 System.out.println(“The letter g is at location “

+ name.indexOf(‘g’));

 System.out.println(“True/False…ends with xyz? “

+ name.endsWith(“xyz”));

 System.out.println(“equal to abcdefghijklxyz? “

+ name.compareTo(“abcdefghijklxyz”));

 System.out.println(“upper case is: “

+ name.toUpperCase());

 System.out.println(“Its length is: “

+ name.length());

 }

}

The output of the program is;

The third character is d

The letter g is at location 6

True/False...ends with xyz? true

equal to abcdefghijklxyz? 0

upper case is: ABCDEFGHIJKLXYZ

Its length is: 15

notes:
 The first line indicates that the third character is d which is true since java

begins counting at zero
 The same is true of the second line
 The equal to … line results in zero…this means if you want to check for string

equality you must compare the result with zero

School of Computer Science

CPS109 Course Notes Set 2

Alexander Ferworn Updated Fall 15

 14

 Note how we gain access to the methods within the String class through the
use of the “.” or dot operator.

9 Operators, Operands and Expressions

definitions
 Operand: something that you can perform an operation on. (eg. 73, var, 9.8)
 Operator: something that performs an operation on an operand (eg. +, -)
 Expression: anything that results in a value usually involving both operators

and operands (this is commonly thought of as a calculation (eg. 2+2)

Java follows a well-defined set of rules for governing what operations should be
done first (algebraic order of operations or precedence).

You can use round brackets to change the order of operations.

Precedence Operator Operation example

1 +
-

unary plus
unary minus

+1
-1

2 *
/
%

Multiplication
Division
remainder

3 *4
3 /4
3%4

3 +
-
+

Addition
Subtraction
String
concatenation

2 + 3
3 – 2
“the” + “dog”

4 = Assignment Val = 3

Notes:
There is a difference between integer and floating point division. At the end of the
following evaluation val will be equal to 0, why?

int val;

val = (1/2) + (1/2);

i Anonymous drunk CS student after a disastrous numerical methods exam

